

The Motto of the University

(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM

 ACCESSIBILITY

DIPLOMA IN SOFTWARE DEVELOPMENT AND PROGRAMMING

 SEMESTER-I

 Course: Introduction to Software Engineering

 Course Code: ISE-1-01T

 ADDRESS: C/28, THE LOWER MALL, PATIALA-147001

 WEBSITE: www.psou.ac.in

S
E

L
F

-I
N

S
T

R
U

C
T

IO
N

A
L

 S
T

U
D

Y
 M

A
T

E
R

IA
L

 F
O

R
 J

G
N

D
 P

S
O

U
,
A

L
L

 C
O

P
Y

R
IG

H
T

S
 W

IT
H

 J
G

N
D

 P
S

O
U

,
P

A
T

IA
L

A

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

http://www.psou.ac.in/

ISE-1-01T: Introduction to Software Engineering

 Total Marks: 100

 External Marks: 70

Internal Marks: 30

Credits: 6

Pass Percentage: 40%

Course: Introduction to Software Engineering

Course Code:ISE-1-01T

Course Outcomes (COs)

After the completion of this course, the students will be able to:

CO1 Learn the basic knowledge of software engineering

CO2 Get basic knowledge of software process and project planning

CO3 Gain knowledge of software requirements analysis

CO4 Understands the detailed knowledge of software design and coding.

CO5 Understand the software testing and maintenance that is relevant to the industry.

Detailed Contents:

Module Module Name Module Contents

Module 1 Introduction to Software

Engineering

The Problem Domain, Software Engineering,

Challenges, Software Engineering Approach.

Software development life cycle and its phases,

Software development process models: Waterfall,

Prototyping, Iterative.

Module II Software Process and

Project Planning

Characteristics of software process, Project

management process, Software configuration

management process. Project Planning:

Activities, COCOMO model. Software Metrics –

Definition, Importance, Categories of metrics.

Software Quality – Attributes, Cyclomatic

complexity metric.

Module III Software Requirements

Analysis

Need for SRS, Data flow diagrams, Data

Dictionary, entity relationship diagram,

Characteristics and components of SRS,

validation, metrics.

Module IV Software Design and

Coding

Design principles, Module-level concepts,

Structure Chart and Structured Design

methodology, verification, metrics: network

metrics, information flow metrics. Coding:

Programming Principles and Guidelines,

Verification- code inspections, static analysis.

Module V Software Testing Testing fundamentals, Black Box Testing:

Equivalence class partitioning, Boundary value

analysis, cause-effect graphing; White Box

Testing: Control flow and Data flow based

testing, mutation testing; levels of testing, test

plan, test case specification, test case execution

and analysis.

Module VI Software Maintenance Categories of maintenance. Software Reliability –

Definition, uses of reliability studies

Books

1. Pankaj Jalote, “An Integrated approach to Software Engineering”, 3rd Ed., Narosa

Publications, 2005.

2. K.K. Aggarwal, Yogesh Singh, “Software Engineering”, Revised 2nd Ed., New Age

International Publishers.

3. Roger. S. Pressman, “Software Engineering – A Practitioner’s Approach”, 5th Ed., Tata

McGraw Hill

4. Henry F. Korth, A. Silberschhatz, “Database Concepts”, Tata McGraw Hill.

5. C. J. Date, "An Introduction to Database Systems”, Pearson Education

COURSE: SOFTWARE ENGINEERING

UNIT 1: INTRODUCTION OF SOFTWARE ENGINEERING

1.1. INTRODUCTION

1.2. PROGRAM

1.3. SOFTWARE

1.4. DIFFERENCE BETWEEN PROGRAM AND SOFTWARE

1.5. TYPES OF SOFTWARE

1.6. COMPONENTS/PARTS OF SOFTWARE

1.7. CHARACTERISTICS/FEATURES OF SOFTWARE

1.8. APPLICATIONS OF A SOFTWARE

1.9. ATTRIBUTES/PROPERTIES QUALITIES OF A GOOD SOFTWARE

1.10. SOFTWARE CRISIS

1.11. SOFTWARE MYTHS

1.12. SOFTWARE ENGINEERING

1.13. EVOLUTION OF SOFTWARE ENGINEERING

1.14. SOFTWARE ENGINEERING — A LAYERED TECHNOLOGY

1.15. ROLE AND RESPONSIBILITIES OF SOFTWARE ENGINEER

1.16. SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

1.17. SOFTWARE DEVELOPMENT PROCESS MODELS

1.18. WATERFALL MODEL/LINEAR SEQUENTIAL LIFE CYCLE MODEL

1.19. PROTOTYPING MODEL

1.20. ITERATIVE ENHANCEMENT MODEL

1.21. SPIRAL MODEL

1.1 INTRODUCTION

Today, computers are everywhere .Almost all organizations are dependent on the computer. It helps

in marketing, accounting, sales etc. Computer is a combination of hardware and software. Computer

cannot work without software. Software helps hardware to perform various tasks. Software has changes

the society and their work. There are many different software packages in the market. People choose

software according to their need and facility. It helps people in many different ways, including saving

time and money. For example, CRM (customer relationship management) software helps business to

manage their customer relationships.

1.2 PROGRAM

1. A program is normally complete in itself and small in size.

2. It is used by the single user. Program lacks in proper documentation because single user is the

author or single developer of the program. User makes little documentation according to his/her

needs without using any format of documentation.

3. In a program, author is the only user of the program. If any problem occurs in the program and

program crashes, then the author can fix the problem and can start using program again without

any disturbance.

4. Program is the result of adhoc development where issues like portability and reliability are not

considered.

1.3 SOFTWARE

Computers cannot perform any task/work without getting instructions from user through software.

The combination of hardware and software is necessary if we want to get some task to be performed by

the computer:

1. Software gives instructions to the computer what to do and how to do it.

2. Software is used for managing controlling and integrating the hardware components of the

computer.

3. Software is not only the collection of computer programs. There is a difference between a

program and software.

4. IEEE defines:“Software is a collection of computer programs, procedures, rules and

associated documentation and data.”

⚫ Program: It is a list of organized instructions when executed behave in a predetermined

manner.

⚫ Procedures: It is a step by step instruction to achieve a desired result. It explains how to

prepare something.

⚫ Rules: Rules are basically standards for actions/activities. Rule is basically a collection of

guidelines to achieve something.

⚫ Documentation: It is a set of documents provided in a particular format. It is written on paper,

online or digital media.

⚫ Data: Data is a raw material which is used in software. It is a set of values.

5. Software is basically developed by a team of developers who ensure the proper documentation.

6. Software developers ensure the well-designed interface because software are used by many

people from different backgrounds.
7. Software is usually large in size and used by many people according to their needs.

8. Many resources and very many efforts are required for developing software.

9. Cost of developing software is very high because the software technology is still labor intensive

and expensive.

10. Software projects are very large, involving many people and span over many years.

11. Software development is a systematic process where key issues like portability and reliability

are considered.

1.4 DIFFERENCE BETWEEN PROGRAM AND SOFTWARE

Sr. No. Concept Program Software

1. Size Size of program is small. Size of software is large.

2. Number of users Single user Large number of users.

3. User interface Program lacks in adequate
user interface.

Software provide well designed and
adequate user interface.

4. Development Program is the result of
adhoc development.

Software is the result of systematic
development.

5. Number of developers Single developer. Team of developers.

6. Documentation User is the developer who

makes little documentation

according to his/her needs

without using any format of
documentation.

Software is the result of systematic work of

team of developers. They provide proper

documentation.

7. Concentration on

Issues

Issues like portability and

reliability are not

considered/concentrated.

Issues like portability and reliability are

given proper concentration.

8. Effort Less effort is required. More effort is required in the development
of software as compared to program.

9. Use of Resources Less resources are required. More resources are required as compared
to program.

10. Cost Development cost of

programme is less.

Development cost of software is

approximately ten times more as compared
to program.

11. Complexity Less complex. More complex as compared to program.

Table 1.1 Difference Between Program and Software

1.5 TYPES OF SOFTWARE

Software is basically of three types:

1. System software

2. Application software

3. Service or utility software

1. System Software: System software is a set of one more programs designed to control the

operation and extend the processing capabilities of a computer system.

The efficient system software allows application software to be run on the computer with less time

and effort. System software makes the operation of a computer system more effective and efficient.

System software helps the hardware components to work together and provides support for the

development and execution of application software.

Some commonly known system software are as follows:

(i) Operating System: An operating system is software that runs on computer and manages the

computer hardware. Operating system performs basic tasks such as recognizing input from keyboard,

sending output to the display screen, keeping tracks of files and controlling peripheral devices like

printers and responsible for security ensuring that unauthorized users do not access the system. Operating

system acts as an interface between hardware and software.

(ii) Language Processors (Translators): Language processors or translators are system software

which transfer (convert) the instructions written in a programming language, into a form which can be

interpreted and executed by a computer system.

It is of three types:

⚫ Compilers: A compiler is a software that accept the total program code (high level language)

as input and then converts it into machine code (low level language). Compilers also detect and indicate

certain types of errors in source programs automatically.

Application

Software

System
Software

Service/Utility
Software

Word Processing Software

Spreadsheets

Database Management Software

Graphics Software

Education Software

Entertainment Software

Communication Software

Report Generator

Fig. 1.1 Types of Software

Data Compression

Backup Software

Data Recovery

Software

Anti Virus Software

Screen Savers

File Defragmentation

⚫ Interpreters: The interpreter takes one source program instruction, translates it into object

code and executes it, then takes up the next instruction translates it and so on. Interpreters are slower than

compilers.

⚫ Assemblers: An Assemblers is a system software that takes as an input a program written in a

assembly language and as an output generates the program written in machine level which can be directly

executed on the computer.

(iii) Communication Software: Communication software enables to transfer the data and programs

from one computer system to another computer system in a network environment where multiple

computers are inter-connected together by communication networks.

(iv) Utility Programs: Utility programs is a set of programs which helps users in system

maintenance and in performing tasks of routine nature like formatting of hard disks, taking backup of

files, sorting records etc.

2. Application Software: Application software is a set of one or more programs, designed to

solve a specific problem. There are wide ranges of applications ranging from simple applications like

word processing, banking etc. to complex scientific/engineering applications like weather forecasting,

design of aircrafts etc.

Some commonly known application software are as follows:

(i) Word processing software: Word processing software helps in day to day documentation

work. It helps in creating texts, manipulating, formatting and printing of the text. It is considered as a

computerized version of typewriter. It allows users to make changes and corrections in the text easily.

(ii) Spreadsheets (Electronic Spreads Sheets): Electronic spreadsheets are sheets of paper with

rows and columns. Data is entered in a tabular form. The area where row and column meet is known as

cell. User put text, number or formulae into cell. It also provides flexibility to user to make changes in

spreadsheets. It provides various built in functions for the convenience of user.

(iii) Database Management Software: Database management system is a software package that

allows a user to perform various operations like creating, deleting, updating, adding, modifying data in

databases. Whereas database is an organized collection of logically related data. It makes retrieval of

information easy and effective.

(iv) Graphics Software: Graphics software is a collection of programs which manipulate the

images to any extent. These programs are referred to as point or draw programs in which user can draw

illustrations from the scratch using an electronic pointing devices such as mouse, light pen or brush.

Graphics programs are also known as point programs.

(v) Education Software: Education softwares are known as teaching and learning tool. These

softwares are used to teach students. These softwares are very effective in mathematics, recognizing of

alphabets, read whole words and sentences etc.

(vi) Entertainment Software: Entertainment software allows a computer system to be used as an

entertainment tool. A good example of such an application is computer video games.

(vii) Communication Software: Communication software is used to share information and

resources by connecting the computers. Communication software is also known as network software. A

user can share information with another user with communication software.

(viii) Report Generators: Report generator helps a user to design his own report. This method is

very easy and less time consumed. Manually design of these reports is very difficult task. Commonly

available report generating software is oracle reports.

3. Service or Utility Software: Utility software is used to provide services to facilities the

working of the operating system. It helps user to take backup of data, scanning virus and retrieval of

deleted files.
Some commonly known utility software are as follows:

(i) Data Compression: Data compression is a ability to reduce the storage requirements of a file

using mathematical algorithms. It helps to store more data on a disk. Commonly used data compression

software areeasyip and WinZip.

(ii) Backup Software: The backup software helps the user to copy large group of files from hard

disk to other storage media like floppy etc.

(iii) Data Recovery Software: It is also known as unerase software. It is required when user delete

a file accidentally from a disk. After deleting a file, user realize that file is still needed and very important.

This software gets back those deleted files which were deleted by the user.

(iv) Antivirus Utilities: The antivirus software track the virus, eradicate and prevent their spread.

The antivirus scans the disk, identify any virus and attempts to remove them. Examples are McAfee,

Norton antivirus etc.

(v) Screen Savers:Screen saver displays moving images on the screen if no input is received from

the user for several minutes. A variety of screen savers are available ranging from flying windows to

hollywood personalities and desktop themes.

(vi) File defragmentation: A file defragmentation is used to defragment the files to speed up the

working of the hard disk. It is now part of the window operating system.

Comparison between system software and application software

Sr.No System Software Application Software

1 It is general purpose software. It is specific purpose software.

2 System software is a superset of application
software.

Application software is a subset of system
software.

3 Examples: operating system, language processor,
communication software.

Examples: word processing, software database
management system, spreadsheets etc.

4 System software gets installed when the operating
system is installed on the computer.

Application software gets installed according to
the requirement of the user.

5 System software can run independently without
the presence of the application software.

Application software cannot run without the
presence of the system software.

6 It is essential for a computer. It is not essential for a computer.

7 The number of system software is less than
application software.

The number of application software is much
more than system software.

Table 1.2 Comparison between system software and application software

1.6 COMPONENTS/PARTS OF SOFTWARE

The components of a software means those parts which complement a software product. Software

needs other existing softwares for communication. These parts are necessary for the software

development. The combination of these parts make a complete software.

The following are components of a software:

1. Operating Environment: Operating environment describe the suitable environment where

software will operate on particular hardware platform in a peaceful manner.

2. User classes and characteristics: Various user classes are used to anticipate the software

product. User classes are based on many aspects like frequency of use, technical expertise, security levels,

educational level etc. The characteristics of user classes are also described in this section.

3. Documentation: Documentation is the text in the written form, which explains all the

operating mechanisms/methods, functions and uses of the software. It provides the full-fledged

information about the software. It explains complete information of the software in a written form. It is of

three types:

(i) Architecture/Design Documentation: This document gives an overview of the software. This

type of document gives the justification of the list things which are used in the development of the

software. The design documentation also explains why such things are used in the software.

Components of a Software

Operating

Environment
User Classes

and Characteristics
Documentation

Design

Documentation

Data

Structure

Technical

Documentation

Algorithms

User Interface

End User

Documentation

Interfaces

Hardware Interface

Software Interface

Communication
Interface

Safety Requirements

Fig. 1.2 Components of a Software

(ii) Technical Documentation: The technical documentation provides the coding part and various

aspects of operations of the software. This documentation also explains the data structures, algorithms and

interfaces:

⚫ Data Structure: A data structure is a systematic way of organizing and accessing data. It

explains how data are stored in a computer.

⚫ Algorithms: Analgorithm is a procedure to solve a problem. The algorithm is the basic

technique used to get the job done.

⚫ Interfaces: It is a boundary across in which two independent system meet and act on to

communicate with each other. The following are the types of interface:

(a) User Interface: It explains the characteristics of interface between the software product and

users. It include the screen images, GUI standards, standard buttons and functions, keyboard

shortcuts, error messages etc.

(b) Hardware Interface: It explains the characteristics of the software product and hardware

components of the system. It include the supported device types, nature of data, communication

protocols, control interactions between the software and hardware.

(c) Software Interface: It explains the connection between the software product with other

specific software components, databases, tools, operating systems, messages coming into the

system and going out. It also explains the communications nature and services needed.

(d) Communication Interface: It explains the communication functions of any product like email,

communication protocols, electronic forms etc. It also describes the used communication

standards like FTP or HTTP.

(e) Safety requirements: Safety requirements are concerned with damage, harm or loss which

occurs during the usage of the product. It also explains some actions that prevents from these

damages.

(iii) End-User documentation: This documentation helps the end users, system administrators and

support staff in understanding the software. It provides all the features and steps required in the software.

In short, it is a type of guide tutorials or a reference guide for a beginner. It should be very simple, manual

and understandable so that end-user can easily understand it and use it.

1.7 CHARACTERISTICS/FEATURES OF SOFTWARE

The uses of computers are growing very rapidly. The computer industries are also growing very

rapidly. The computer industries are very different from manufacturing industries in many aspects.

Manufacturing industries are those industries who make/manufacture T.V.s, buildings, bikes etc.

Computer industries develop the software not manufactured. Software is a logical entity not a physical

entity. User cannot touch the software, cannot feel the quality of software.

The following are the characteristics of a software:

1. Software is not manufactured or created, it is developed: Software is first designed and then

developed. Software is a logical entity, so it is developed not manufactured.Industries manufactured only

those products which are in physical from, which can be touched. Software is not in a touchable form that

is why it is developed.

Developers have number of automated case tools but quality of software depends upon the skills and

creative abilities of the individual developers. Developers needs managing and controlling abilities to

ensure the quality of the software product.

2. Software is Highly Malleable: Software is different and highly malleable as compared to other

products. For example, we buy a new cabinet for old T.V. but old T.V. does not fit into this new cabinet.

What we do? We call the carpenter to make necessary changes in the cabinet so that T.V. can fit into the

new cabinet. On the other hand, if we want to change something in the software. We can directly modify

the software itself rather than changing in the design of the software.

3. Software does not wear out but deteriorates: Software does not wear out means software is

not influenced by the environmental changes. Software is a logical entity.

Software functions exactly the same way years after years without changing requirements over a period of

time. If changes are necessary in the software to meet the user‘s new requirements, then there is a

possibility of occurring of some defects which deteriorates the quality of the software.

Manufacturing companies replace the defected parts with the spare parts and maintain the quality of

the product. But this cannot happens in the software industries. Software cannot replace with the spare

parts.

Fig. 1.3 Characteristics of a Software

4. Software are created from scratch not assembled with existing components: In

manufacturing companies, various identifying components are put together to form the original

masterpiece. Every component is flexible and independent in nature. But this approach is not applicable

in software development. In software development approach, each module is inter-linked with another

module. Each module is further divided into sub-modules. Different development teams are required for

Software are created from scratch not
assembled with existing components

different modules and sub-modules. Here modules are not assembled, modules are developed and inter-

linked with each other to make a complete software.

1.8 APPLICATIONS OF A SOFTWARE

Software are used in many areas such as business, entertainment, medical, reservations etc. There is

no area where software is not used.
The following are some areas where software are used:

1. Business Softwares: Softwares are used in business for fast, efficient and intelligent

functions/tasks. With the help of softwares, companies make charts, excel sheets etc. which help in

effective decision making. Companies also use software for visuals and advanced formatting.

2. Entertainment Softwares:Softwares are also used for entertainment purposes. There are

number of entertainment softwares in the market. These softwares are extremely popular over the past

decades. These softwaresincludes games, graphics, multimedia etc.

3. Scientific Investigation and Engineering Software: These softwares satisfy the requirements

of scientists and engineers. These software are specially developed and designed for scientific and

engineering purposes. These softwares are capable to perform complicated algorithms, programs etc.

Astronomy and satellite launching etc. are related to scientific investigation and engineering softwares.

4. Education Softwares: Education softwares are known as teaching and learning tool. These

software are used to teach students. These softwares are very effective in mathematics, recognizing of

alphabets, read whole words and sentences etc. The primary purpose of education software is teaching or

self-learning.

System Software

Real-time Software

Application Software

Web-based Software

Banking Software

Business
Softwares Entertainment Softwares

Scientific/Engineering Software

Education Softwares

Micro Controller/Embedded Software

Artificial Intelligence Software

Utility Software Communication Software

Fig. 1.4 Applications of a Software

5. Micro Controller/Embedded Software: Embedded software is designed for a particular kind

of application service. It performs one or more predefined tasks. It is a combination of computer hardware

and software. Embedded software refers to computer programs that directly interact with hardware.

Example — Cars, Microwave, Watches etc.

6. Artificial Intelligence Software: Artificial intelligence software is an advance technique

software. There softwares can understand a natural language, find out the reasons and their solutions

automatically around the world. Artificial intelligence software requires human type of intelligence.

Example—Expert system, Pattern recognition etc.

7. Communication Software: Communication software is used to share information and

resources by connecting the computers. A user can share information with another user with

communication software. With the help of modem and telephone line, a person can make contact with

another person located at any place in the world.

8. Utility Software: Utility software is designed to help in management and tuning of computer

hardware, operating system and application software. It is normally used to solve the common problems

of software and hardware. The examples of Utility software are as follows:
⚫ Disk defragmenters

⚫ System profilers

⚫ Virus scanners

Applications of

a Software

⚫ Application launchers

⚫ Network managers

⚫ Encryption utilities.

9. Banking Software: Banking software is an enterprise application solution that enables Banks

to provide banking services and content to customers with efficieney and reliability within their bank

premises. The banking software provides following features:
⚫ Customer Management

⚫ Transaction Management

⚫ General Ledger & Accounting

⚫ Accounting Transaction /Maintenance

⚫ Rule Implementation / Maintenance

⚫ Control / Configuration Management

⚫ User-orientation

⚫ Reporting

⚫ Security

⚫ Control / Configuration Management

10. Web-based Software: Web based software is an application package that can be accessed

through the web browser. The software and database reside on a central server. Web based application

gives us an opportunity to access the business information from anywhere in the world at anytime. It also

facilitates us to save time, money and improve the interactivity with the customers and partners. It is also

widely used for information exchange, entertainment and e-commerce.

11. Application Software: Application software is a computer software that makes use of the

capabilities of a computer directly and thoroughly to a task that the user wishes to perform. Typical

examples of software applications are word processors, spreadsheets and media players. Multiple

applications bundled together as a package are sometimes referred to as an application suite.

12. Real-time Software: The term ―real-time‖ refers to the ability to do or perform tasks right at

the very moment they are said to be executed. Real-time software enables the user to execute various

tasks and activities at the same time, as long as the programs are kept open. In computer systems, real-

time operating systems contain a multitude of programs to run and operate even if the user is focused only

on just one application. These software include media, building tools, computing and analysis

applications, and system maintenance

13. System Software: System software is a type of computer program that is designed to run

computer hardware and application programs. The operating system (OS) is the best-known example of

system software. The OS manages all the other programs in a computer. Other examples of system

software are BIOS (basic input/output system) program, the boot program, assembler, device driver, etc.

1.9 ATTRIBUTES/PROPERTIES QUALITIES OF A GOOD SOFTWARE

Quality of a software depends upon different parameters. No single property fully describes the

quality of a product. A software is called a good quality software if it possesses the following attributes:

1. High Quality: A good software product should possess the high quality means software should

have minimum number of errors. The minimum number of errors make software more reliable.

2. User Friendly: Software should be user friendly. It should be usable by all types of user.

Software should be easy in use. Software should provide all appropriate and adequate user

interface along with the sufficient documentation.

3. Secured and Safe: Software should not cause any economic/physical damage. It should be

secured and safe to work without any failure.

4. Fit for intended job: Software should fulfills all the requirements of the user. It should work

according to the needs of the user and should be fit for the intended job. A quality software

always fulfils the purpose of the user.

5. Within the budget:Software should be within the budget for the user. The cost of software

should be within the packet of the user. Software should give profit to the computer industry.

6. High Adherence (tolerance) power: Software should respond to each and every type of input

of the user. Software should behave reasonably even in the anticipated situations.

7. Maintainable/Modifiable:A good software should be maintainable and modifiable according

to the situation. It should be changed to meet the new requirements of a user/customer.

8. Efficiency: Software should utilize resources in such a way that there should be no wastage of

any resource. For example: memory and processor should be utilized up to the optimum level.
High Quality User Friendly Secured and Safe

Repairable

Portable

Delivered on time

Adequate
documentation

Accurate

Efficiency

Fit for intended job

Within the budget

High Adherence
power

Maintainable

Fig. 1.5 Attributes of a good software

9. Adequate documentation: A software should have adequate documentation so that it can

solve its purpose very well.

10. Accurate: Software should perform all tasks very accurately. Software should perform all

operations according to the predefined specifications of the user and give accurate output to the

user.

11. Delivered on time:Software should be developed and delivered within the specified time.

12. Portable:Software should be portable and have ability to work in different platforms.

13. Repairable:Software should be easily repairable. It should have privilege to correct the errors

in a limited time period with the small amount of effort.

1.10 SOFTWARE CRISIS

Development of large software product with many essential features is the manual, error prone and

complex process. The term software crisis is used in development of software. The term software crisis

refers to the difficulty in developing a software like writing correct, understandable and verifiable

computer programs. The main reasons of term software crisis are expectations, level of complexity and

changeability. For example: every user demands large number of features in a required time and in a

minimum budget. These expectations take the software into the software crisis.

“Software crisis means difficulty in writing correct, understandable and verifiable computer

program.”

Software crisis are the problems encountered in the development of the software. This is due to

many issues like projects are not managed properly, late delivery of software, exceeds the budget for the

development of software etc.

The following are the main reasons of software crisis:

1. Lack of communication between developers and users.

2. Lack of understanding of the problem.

3. Lack of adequate skills in the development staff.

4. Large and complex problems.

5. Increase in cost of software as compared to hardware.

6. Lack of adequate environment for developing the software.

The following are the some software crisis which are faced by many software industries:

1. Software is expensive.

2. Late delivery.

3. Software is not as per user requirements.

4. Difficult to modify/change and rework.

Attributes of a
good software

5. More chances of failures.

6. Brittleness.

7. Inadequate documentation.

8. Low quality of software.

In short, many software projects failed in late 1960‘s because these projects were late, over budget,

complex, difficult to maintain and did not satisfy the client‘s requirements. This was known as software

crisis.

Companies has been made many improvements and changes to solve these problems but problems

are not decreasing. After using various methods and processes, companies are still facing new challenges

and problems with the same old problems. Companies come with the conclusion that no single approach

prevents the project/software over runs and failures in all cases.

In general, large complicated and poorly documented software projects have large, unanticipated

problems. Whereas small projects have small problems. Researchers are still searching for the solution of

the crisis.

1.11 SOFTWARE MYTHS

The term myth relates with mis-information or confusion. There are so many myths associated with

software development. These myths affect the development of software indirectly. It means because of

these myths, problems are arise in the initial stage of software development. There is no truth behind

these myths. Some myths related to software development are as follows:
1. Software is good if it has many features.

2. Many software engineers cover up the delay.

3. Quality of software can be checked only after execution.

4. User requirements can be changed during any stage of software development process.

5. Reusing software increases safety.

6. Testing software can remove all the errors/bugs.

7. Software is easy to change.

1.12 SOFTWARE ENGINEERING

1. Software engineering has different meaning and definition for many people. People explain

software engineering according to their interest whereas experts give different definitions.

According to IEEE

“Software engineering is a process of systematic and disciplined approach for the development,

operations and maintenance of the software.”

According to Barry Bohem:

“Software engineering is the application of science and mathematics by which the capabilities of

computer equipment we made useful to man via computer programs, procedures and associated

documentation.”

2. Software engineering ensures the development of good quality software in a minimum budget.

It is the disciplined process which is concerned with all aspects of software production.

3. Software engineering follows quality standards like ISO 9001 and capability maturity model to

maintain the quality in software. It focuses on various methods which are used in many software projects.

4. Need of Software Engineering: The goal of software engineering is to develop methods and

procedures fear software development in a consistent manner to produce high quality software at low

budget. Software engineering follows quality standards like ISO 9001 and capability maturity model to

maintain quality in software. To achieve this goal, software development should be done in phases.

Software processes should be designed and controlled properly to maintain consistency in development of

software. The aim of the software engineering is to take the development nearer to the science and to

concentrate on methods helpful in software development.

Methods

Tools

Process

Quality Focus

5. Issues in software engineering: The following are some issues/problems related to software

engineering.

⚫ Technology and Management: Developing a large software is very difficult as compared to

small software. Large software needs adequate technology (methods, procedures and tools) and proper

management so that software can be developed in a systematic manner in a required time without facing

any problem.

Large projects are tightly managed to control the cost schedule and quality. Formal technology

requirements of large software projects are high.

Whereas, small software projects can be developed with informal methods and technologies. For

example: if we count the people in a room. It requires easy method and less time. But if we want to take a

census of a country, then it requires proper formal methods and procedures for management and

organization.

⚫ Consistency in terms of performance and quality: Consistency of performance and quality is

very important for all computer industries. The aim of computer industries is to develop a software with

low budget and high quality in a consistent manner. Computer industries want consistent quality with

improved productivity but it is very difficult task. A good quality software in a low cost is a challenge for

computer industries.

⚫ Expensive: Software development needs resources like hardware, software, manpower etc. in a

low budget. But it is a challenge because software development is a labor intensive, time consuming and

costly method.

1.13 EVOLUTION OF SOFTWARE ENGINEERING

Evolution of software engineering means take a look to check how software engineering been over

the years. With the passage of years, scope and meaning of software engineering enhanced with number

of issues.

During 1960, software was developed by a single programmer or by a small team of programmers.

In this period, programmer can draw flow diagrams using language tools, write programming

codesaccording to his/her choice. In 1970, team of programmers became larger on the basis of type of

software project. Cost estimation was not considered but programming languages like FORTRAN and

quality assurance got introduced. During the period of 1980‘s and 1990‘s, standards and methodologies

were introduced for ensuring quality and reducing cost in software product.

Computer aided software engineering (CASE) companies use no of tools (Knowledge Based

Systems and Total Quality Management) to improve the software development process.

1.14 SOFTWARE ENGINEERING — A LAYERED TECHNOLOGY

Software engineering follows the layered technology which are as follows:

Fig. 1.6 Software Engineering — A Layered Technology

1. Methods:It provides technical support for building software. It encompasses many tasks

including communication, requirement analysis, design modeling, program construction, testing and

support.

2. Tools:Tools provide automated or semi-automated support for the process and methods.

3. Process: It is a framework with activities for effective delivery of software engineering

technology. A process is a collection of activities, actions and tasks that are performed when some work

product is to be created. The purpose of process is to deliver software in a timely manner and with

sufficient quality to satisfy those who have sponsored its creation and those who will use it.

4. Quality Focus: Any engineering approach must rest on organizational commitment to quality

which fosters a continuous process improvement culture.

1.15 ROLE AND RESPONSIBILITIES OF SOFTWARE ENGINEER

An engineer is someone who uses advanced knowledge of science, mathematics, and technology to

build objects for use by others. Whereas software engineer is responsible for the complete life cycle of a

new/modified software product from design to implementation. The roles and responsibilities of software

engineer are as follows:

1. Software engineer is a good programmer and have a good knowledge of data structures and

algorithms. Software engineer is expert in more than one programming language and have

creative or logical thinking mind.

2. Software engineer is familiar with many design approaches and have ability to move among

several levels of abstraction of different stages of the project, to a specific design for system

and at the end to the detailed coding level.

3. Software engineer consult with systems analysts, programmers and others to collect the

limitations, capabilities and performance requirements of software product.

4. Software engineer modify the existing software to correct errors, allow it to adapt to new

hardware, or to improve its performance.

5. Software engineer analyze the user needs and software requirements to determine feasibility of

design within time and cost constraints.

6. Software engineer coordinate software system installation and monitor functions to ensure

specifications are met.

7. Software engineer analyze information to determine, recommend, and plan computer

specifications and layouts, and peripheral equipment modifications.
8. Software engineer supervise the work of programmers, technologists and technicians.

9. Software engineer utilizes software engineering tools such as configuration management

systems, build processes, and debuggers in the software development process.

10. Software engineer serve as a mentor to less experienced software engineers.

11. Software engineer also provides training to new users and handles support and feedback.

12. Software engineer produce well-organized, optimized, and documented source code. Contribute

to technical design documentation.

13. Software engineer continuously learn and improve skills and can work independently when

required.

1.16 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Software development life cycle is also known as product development life cycle (PDLC). It is also

called software development process (SDP). Software development life cycle has many phases and

activities for software development. Each phase ends with a defined output which is the input for the next

phase.

The goal of SDLC is to develop a high quality product in minimum cost by checking the progress at

the end of each phase. In all the phases, complexity of tasks and project tracking etc. should be managed

to maintain the quality of the software product. It should also help to solve the software crisis.

SDLC varies with large projects and small projects. Small projects have different phases, activities

and issues as compared to large software projects. Large software projects should require proper

documentation with user specifications whereas small softwares can be developed without written record

of activities.

Key Points:

⚫ In the SDLC, basically the major activities related to software development are performed.

⚫ SDLC is a sequence of steps/phases to perform the well-defined activities to fulfill the desired

goals. In SDLC output of one step/phase is the input of next step/phase.

⚫ There is a criteria for each input/output phase. Input criteria specifies the conditions when to

terminate the activities of the phase output criteria specifies the conditions when to terminate

the activities of the phase.

⚫ The goal of the SDLC is to detect the errors/defects in the starting of their origin in the phase.

Validation and verification should be performed at the end of the phase to detect the errors.

⚫ Due to importance of development process, various models have been proposed for developing

a software which are being discussed in the this chapter. [2.3]

⚫ Clear objective is defined in the starting of the development process to make it more effective

and less expensive.

There are seven phase of SDLC:

1. Feasibility Analysis

2. Requirement Analysis

3. Design

4. Coding

5. Testing

6. Implementation

7. Maintenance

Fig. 1.7 Phases of SDLC

1. Feasibility Analysis/Feasibility Study:

⚫ Requirements Gathering: The Business Analyst (BA) or a representator of a company

collects all the predefined information of the company like what type of softwares a company can develop

and in how many days etc. and goes to the client. Then BA collects all the basic requirements and

specifications of the client and prepare a document known as BDD (business development design), BRS

(business requirement specification), URS (user requirement specification), and CRS (customer

requirement specification) etc. All these documents are same, only name is different. These documents

are the output of the feasibility study phase and input of the requirement analysis phase.

⚫ Types of Feasibility Study:

(a) Technical feasibility study: In the technical feasibility study, possibility of project

development is measured. It is checked that whether the software project is technically sound or not.

(b) Economic feasibility study: In the economic feasibility study financial matters are discussed.

For example : Is the software project is under budget or not? A software project should be under budget.

(c) Schedule feasibility study: In the schedule feasibility study, time duration is decided. The

company finds the probability to complete the project in fixed allowed time period.

(d) Motivational feasibility study: In the motivational feasibility study, the sufficient motivation

of organization is checked with necessary user participations, resources etc.

2. Requirement Analysis: The output of the feasibility study phase CRS (customer requirement

specification) is used as input in the requirement analysis phase. Generally project manager analyze the

requirements of the user and prepare the project plan.

Requirement analysis phase has 4 steps which are as follows:

(a) Requirement Analysis: All the requirements of client (mentioned in CRS) are studied and

analyzed in detail. To understand the requirements of clients for large projects with many features,

different tasks are analyzed. But it is very difficult because of communication gap between client and

developer. This type of difficulty is based on basically two aspects. In one aspect, developer tries to

develop a software which meets client‘s requirements without understanding the client‘s problem domain.

In second aspect, client does not aware about the issues/problems in the development of the software.

(b) Deciding Technology: In this step, suitable technology is being declared for the development

of software project. Companies select suitable technology based on many factors like requirements of

clients, type of software project etc.

(c) Estimating the Resources: In this step, resources like manpower, time, money etc. are

estimated for the development software project. All resources should be examined and improved in

advance to reduce the difficulties in the software development.

(d) Preparing SRS (Software requirement specification):

⚫ SRS (Software Requirement Specification) is a last and fourth step of requirement analysis

phase. It is a document with the specific language to specify all the inputs, outputs, functional

requirements, performance requirements with some constraints like economic issues, security

etc.

⚫ Definition: SRS is the specification for particular software product that perform certain

functions in a specific environment.

⚫ SRS is a complete description of the software which is going to be developed. It describes the

complete scope of the product.
⚫ SRS is prepared by Senior Analyst (SR).

⚫ It is a type of agreement between the client and the company on what the software product is

going to do.

⚫ All functions/tasks of software development are based on the software requirement

specification.

3. Designing: In the design phase, a plan is proposed for software development according to the

software requirement specification. The quality of a software depends upon the design document. Design

document is like a blue-print or plan for the software development which is used in later stages.

The design activity of a software development is divided into two levels.

(a) High Level Designing/System Design

⚫ It is also known as top-level design. It is done by Technical Manager (TM).

⚫ In this designing, software is divided into number of modules. Modules are identified along

with their specification and interaction among them. In this type of designing, focus is on

identifying the modules.

(b) Low level designing/detailed design:

⚫ It is also known as detailed design. It is done by Team Lead (TL).
⚫ In this designing, modules are further divided into number of sub-modules.

⚫ Internal logic of sub-modules are specifies in the high level descriptive language.

⚫ The output of this phase is detail design document (DDD) which is further used in later phases

to develop a high quality software.

4. Coding:

⚫ Once the designing of software is complete, the coding phase comes, in which developers

follow some coding standards for writing the programs.

⚫ In this phase, design of a software product translates into simple and understandable code in a

particular language.
⚫ Developers prepare the source code which is easy to write, read and understand.

⚫ Coding should be done with simplicity, clarity and well-written format. Effective coding can

reduce the testing and maintenance effort.

⚫ Coding part is very time consuming and difficult task. Coding should be done in structured

programming which linearizes the control flow in the programs.
5. Testing:

⚫ The quality of a software product is measured and controlled by the testing phase.

⚫ Testing is a process of executing a program with the intent of detecting or finding errors. Proper

planning is required for the testing.

⚫ Testing is very difficult and time-consumingprocess.

Testing

White Box Testing Black Box Testing

Fig. 1.8 Types of Testing

⚫ Before starting this process, test engineers study the CRS (customer requirement specification)

document prepared in the first phase and prepare a review report.

⚫ In the review report, test engineers mentioned those points which are not clear and

understandable. Test engineer send this review report to the Bussing Analyst (BA).

⚫ Test Engineer prepare test plan before testing. Test plan specifies the scope, approach,

resources and schedule of all testing activities.

⚫ Test plan covers all the activities like items to be tested, types of testing to be performed,

features to be tested, persons/resources responsible for testing, time scheduling

issues/risks associated with the plan etc.

⚫ Testing starts with the unit testing, in which a module is tested separately then integration

testing is performed, which detect design errors and in last, system testing is performed to

check the system performance according to the software requirement specification (SRS).

⚫ The output of the testing phase is known as defect profile document (DPD). Test Engineers

sends this document to the team of developers for removing the errors and controlling the

quality of software.

6. Implementation:

⚫ In this phase, after completing the software project, a mail is sent to the client. This mail is

known as software delivery note.
⚫ It after receiving this mail, client test the software project known as user acceptance testing.

After this successful testing, software is installed in the client‘s environment.

7. Maintenance: During installation of software product in the client‘s environment, if any

problem occurs or if client wants to make some changes in the software, then the maintenance people

make changes to solve the problem and prepare the deployment document (DD) for further use.

1.17 SOFTWARE DEVELOPMENT PROCESS MODELS

1. A software development life cycle models describe the necessary sequence of different

activities helpful in software development.

2. Software development starts with the request of client and undergoes many stages until

software product is developed and delivered to the client.

3. Thses models show series of identifiable activities of software development for the successful

delivery of the software product.

4. In the SDLC models, several activities and several documents are carried out. Documents are

normally made to collect all the input/output information. Different phases of software

development are shown graphically with the textual description for easy understanding.

5. In short, these models give descriptive and diagrammatic representation of software

development phases.

6. There are so many software development life cycle models like waterfall model, spiral model

etc. The common aim of these models is to develop a good quality software.

7. No matter which life cycle model is followed, all models have basic activities, carrying process

of these models may be in different orders, but goal will remain same.

8. These models are helpful in developing a high quality software with low budget and time

constraints.

There are so many life cycle models. The following are some life cycle models commonly used by

computer organizations:

Software Development Life Cycle Models

Waterfall

Model
Prototyping

Model
Iterative

Enhancement
Model

Spiral
Model

Fig. 1.9 Models of SDLC

1.18 WATERFALL MODEL/LINEAR SEQUENTIAL LIFE CYCLE MODEL

1. Waterfall model is the simplest and oldest process model.

2. It is represented by sequence of different stages.

3. The output of one stage flows into the second stage, the output of second stage flows into third

stage and so on.

4. It is a definite structure of software development life cycle. Each phase is distinct and has a

well-defined entry.

5. There is a provision for verification, validation and error correction at the end of every phase.

6. The part of waterfall model between the feasibility study and system testing is known as

development part. After the development part, the software product is delivered to the

customer. The maintenance phase comes after the delivery of the developed product to the

customer.

7. This model is also known as the linear sequential model or the software life cycle model.

8. The waterfall model consists of following six stages:

(i) Feasibility Study: The feasibility study determines whether the developing model is

financially and technically feasible or not. It is necessary to analyze the problem. More we understand the

problem and the better we can identify alternative solutions. The feasibility study is usually done within

limited time bounds. The outcome of feasibility study is a document that should contain at least the

following factors:

⚫ A definition of the problem.

⚫ Determination of technical and economic viability.

⚫ Alternative solutions and their expected benefits.

⚫ Requirement of resources and detail about delivery

This report is called as feasibility study which is prepared by a group of software engineers. The

client or the customer is also consulted through questionnaires. The report determines whether the project

is feasible or not.

(ii) Requirement Analysis and Specification: In this phase, we exactly analyze the requirements

and needs of the project. The purpose of a requirement analysis is to identify the qualities required for the

application, in terms of functionality, performance, ease of use portability, and so on. The result of this

phase is known as the software requirement specification (SRS) document.

An SRS document must contain the following items:

⚫ Detailed statement of problem.

⚫ Possible alternative solution to problem.

⚫ Functional requirements of the software system.

⚫ Constraints on the software system.

The SRS document must be precise, consistent, and complete and covers features like problem

statement, introduction to the problem, functional requirements of the system, non-functional

requirements of the system, behavioral descriptions and validation criteria.

(iii) Designing: The objective of the design phase is to convert the requirements specified in the

SRS document into a structure that is suitable for execution in some programming language. Two

different design approaches are available: the traditional design approach and the object-oriented design

approach.

⚫ In Traditional Design Approach, two activities are carried out, first a structured analysis of the

requirements specification and second structured design. During structured design, the results

of structured analysis are transformed into the software design.

⚫ In Object-Oriented Design Approach, the various objects and their relationships within the

system are identified.

(iv) Coding and Unit Testing: Coding and unit testing is the phase in which we actually write

programs using a programming language. The output of this phase is an implemented and tested

collection of units. The unit testing is the testing of code to check correctness and remove the bugs. The

debugging is a related activity performed in this phase.

(v) Integration and System Testing: During the integration and system testing phase, the modules

are integrated in a planned manner. The different modules are integrated to develop a software product.

During each integration step, the partially integrated system is tested finally, when all the modules have

been successfully integrated and tested, system testing is carried out. The objective of system testing is to

determine whether the software system performs per the requirements mentioned in the SRS document.

The system testing is done in three phases: Alpha, Beta, and Acceptance Testing.

⚫ Alpha Testing is conducted by the software-development team at the developer‘s site.

⚫ Beta Testing is conducted by a group of friendly customers in the presence of the software-

development team.
⚫ Acceptance Testing is performed by the customers themselves. If the software is successful in

acceptance testing, the software product is installed at the customer‘s site.

(vi) Delivery: The delivery of software is done in two phases. In the first phase, the application is

deployed on few customers‘ sites. The purpose of this procedure is to check the product performance at

client site, on the basis of feedback from users, whether any changes is necessary or not. In the second

phase, finally the product is distributed to the customer‘s officially.

(vii) Maintenance: The maintenance as the set of activities that are performed after the system is

delivered to the customer. Its purpose is to monitor the performance of the software, and removing error if

nay faced by the customer in site.

Feasibility Study

Requirement Analysis and Specification

Advantages of Waterfall Model

Designing

Coding and Unit Testing

Integration and System Testing

Delivery

Maintenance

Fig. 1.20 Steps of Waterfall Model

The various advantages of the waterfall model include:

1. It is a linear model.

2. It is a segmental model

3. It is systematic and sequential.

4. It is a simple one.

5. It has proper documentation.

Disadvantages of Waterfall Model

The various disadvantages of the waterfall model include:
1. It is difficult to define all requirements at the beginning of a project.

2. The model is not suitable for accommodating any change in later stage.

3. It does not good for large scale projects.

4. It involves heavy documentations.

5. We cannot go backward in the SDLC.

6. There is no prototyping model for clearly realizing the customer‘s needs.

7. There is no risk analysis.

8. If there is any mistake in any of seven phases then we cannot develop good software.

9. It is a document driven process that requires formal documents at the end of each phase.

1.19 PROTOTYPING MODEL

1. Prototyping model is an intuitive approach of the waterfall. It overcomes the limitations of

waterfall model.

2. Multiple development cycles take place in prototyping, making it multi-waterfall cycle. Cycles

are further divided into smaller and easily manageable iterations.

3. The interactions in the prototype enable the developer to better understand what needs to be

done and to satisfy users.

4. The prototype model is helpful in understanding the currently known requirements. In the

waterfall model, client has to specify his/her requirements before the designing and coding

phase. Client‘s requirements are freezed in the requirement phase. But in the prototyping

model, client can specify his/her requirements in more detailed manner.

5. In this model, the client can interact with the prototype and can get an actual feel of the system.

6. Prototyping model is suitable for those projects where it is very difficult to determine the

specifications of complex and large projects like client‘s feedback regarding software product,

what is correct and missing, what needs modification etc.

Acceptance by Customer

Requirement

Prototype and
Requirements

Quick Design

7. Developers make changes in the software product on client‘s suggestions. Clients use the new

changed software product again and allowed to give his/her suggestions to the developers. This

cycle repeats until client satisfies with the software product.

8. Prototyping ensures that end users constantly work with the system. Prototyping model is

excellent for designing good human computer interface systems.

9. The steps of prototyping model are as follows:

(i) Requirements gathering and analysis: The model begins with requirement gathering and

analysis in detail. In this phase, requirements are gathered and analyzed by the organization.

(ii) Quick Design: After analysis of requirements, quick design is created. It is a rough design not

a detailed design. This quick design helps in developing a prototype and provides an idea of the

software product to the user.

(iii) Build Prototype: With the help of quick design, a prototype is build which represents the

working model of the required software product.

(iv) User Evaluation: A proposed prototype is evaluated by the user. User studies the strengths and

weaknesses of this prototype. User provides his/her comments and suggestions like what is to

be added or removed etc. to the developer.

(v) Refine Prototype: If after the evaluation of the prototype, user does not satisfy, then prototype

is refined according to the requirements. A new prototyped is developed and being evaluated by

the user. After the satisfaction of user, final system is developed.

(vi) Engineer Product: Once the user accepts the software product is maintained on regular basis.

Advantages of Prototyping Model:

Prototyping Model

Fig. 1.21 Prototyping Model

The various advantages of the prototyping model are as follows:

1. Quick development: Developer‘s approach is to generate software product quickly according

to the client‘s requirements.

2. Flexible: Prototyping models are more flexible as compared to waterfall model. Clients can

give suggestions to developers for the changes in the software product. In this way, model

reduces the communication gap between client and developers.

3. Easy to test and debug: Developers can easily test and debug a smaller iteration rather than

the whole software product.

4. Manage risk: During the small iteration, risky pieces are identified and handled easily.

5. User Involvement: Users are actively involved in the software development process.

Disadvantages of Prototyping Model

The various disadvantages of the prototyping model are as follows:

1. Each phase of iteration is rigid and do not overlap each other.

2. High Cost: Experienced developers and changing requirements are two main reasons of higher

cost in prototyping model.

3. Lower Quality: During the development of software product according to prototyping model,

the developer‘s focus is on quick development without thinking about the quality of software

product. Development approach is to satisfy client‘s needs without bothering about the quality

of software product.

4. Compromises in Implementation: Developer‘s aim is to get prototyping quickly and to meet

client‘s desires. To achieve this aim, developers make many implementation compromises like

inappropriate operating system, an inefficient algorithm etc.

5. Time Consuming Process: It is a slow process. The aim of prototyping model is to satisfy the

customer. But requirements of customer keeps changing according to external environment.

Hence,it is time consuming process.

1.20 ITERATIVE ENHANCEMENT MODEL

1. Iterative enhancement model provides the benefits of both waterfall model and prototyping

model.

2. According to the iterative enhancement model, each increment adds some functional capability

to the system until the full system is implemented.

Design 0
Implement 0

Design 1
Implement 1

Design 5
Implement 5

 Analysis 0 Analysis 1 Analysis 5

Fig. 1.22 Iterative Enhancement Model

3. The basic idea behind this model is to develop a system through repeated cycles (iterative) and

in smaller portions at a time.
4. This model is used when requirements of system are clearly defined and understood.

5. Iterative enhancement model supports changing requirements.

6. Parallel development can be planned and progress can be determined during iterative

enhancement model.

Advantages of Iterative Enhancement Model

1. Iterative enhancement model is better in testing. It is because testing increment is very easy as

compared to testing the entire system. It overcomes the limitation of waterfall model.

2. Like prototyping, this model also provides feedback to the client. This feedback is very useful

for determining the final requirements of the system.

3. This model also provide results periodically and early. It allows the users to get some early

experience of the software.

4. Risks are identified and managed during iteration. During smaller iteration, testing and

debugging is easy.

5. This model is suitable for large and mission critical projects.

Disadvantages of Iterative Enhancement Model:

1. This model is not suitable for small projects.

2. During iterative enhancement model, management complexity is more and highly skilled

resources or required for risk analysis.

3. Sometimes, the iteration may never end and the user may never really get the final product.

1.21 SPIRAL MODEL

1. Spiral model was developed by Barry Bohem in 1988. In this model, software is developed in

spiral with many loops.

2. The number of loops in a spiral model are not fixed and can vary from project to project. Each

loop is the phase of the software project.

3. At each loop, risks are identified and resolved by prototyping. At every spiral, risk analysis is

done to evaluate the development efforts/labour and risks.

4. This model is very flexible because number of phases are not fixed for the software

development.

5. Inner cycles/loops represent the requirement analysis alongwith the prototype, whereas outer

cycles represent the waterfall model.

6. Generally, spiral model is combination of strengths of various models. It uses stepwise

approach of waterfall model and prototyping for resolving the risks occurred during software

development.

7. Spiral model is also called as metal model because both waterfall model and prototype model

are used in it. It reduce risk as well as follow systematic approach.

8. Phases of Spiral Model: There are four phases in the spiral model. In the starting of this

model, requirements are gathered to analyze the risk. Spiral model makes communication

effective between customer and developer. In this model, angular component represent the

progress and reduces the represent cost.

The four phases of spiral model are discussed as follows:

(i) Planning: In the planning phase, requirements are gathered. All methods and strategies are

decided in this phase. The objectives, constraints and alternatives are also discussed in this phase.

(ii) Risk Analysis: A process is undertaken to identify the risks. In this phase, alternate solutions

are also identified to resolve the risk. Prototyping is used at the end of this phase to resolve the risks

which are identified and analyzed. In this phase, risks associated with these new alternative solutions are

also analyzed. In this phase, keeping new risks in mind, strong decisions are taken to resolve the risks

with prototype.

(iii) Engineering: It involves the actual development of software project. After finding and

resolving all the risks through prototyping, software is being developed in the engineering phase.

Spiral Model

Fig. 1.23 Spiral Model

(iv) Evaluation: This phase allows the customer to evaluate the output of the project to date before

the project continues to the next spiral.

Advantages of Spiral Model

1. Spiral model evaluates the risk analysis. It enhances the avoidance of risk.
2. It is good for large and mission critical objects.

3. Software is produced early in the software life cycle.

4. Strong approval and documentation control.

Disadvantages of Spiral Model

1. Sometimes, it is costly in use.
2. It is not suitable for small projects.

3. The success of spiral model depends upon the risk analysis phase.

4. Risk analysis requires highly specific expertise.

5. It is not suitable for low risk projects.

6. Spiral may continue indefinitely.

COURSE: SOFTWARE ENGINEERING

UNIT 2: SOFTWARE PROCESS

2.1 Introduction

2.2 Characteristics of Software Process

2.3 Project Management Process

2.3.1 Definition

2.3.1.1 Characteristics of Project

2.3.1.2 Project Manager Manages the Project

2.3.2 Four P’s in Project Management

2.3.3 Activities of Project Management

2.3.4 Issues in Project Management

2.4 Software Configuration Management Process

2.1 INTRODUCTION

Software is developed through a set of activities which are essential for software development of

software; a collection of procedure is adopted to achieve certain goals or standards. Therefore the process

that deals with technical and management issues of software development in mind is known as software

process.

Computer software is loaded into the computer memory and the computer becomes capable of

operating the software. The instructions are passed from application software to the hardware through the

systems software. The following points are important to be noted about software process:

1. Processes use resources which under terms and conditions product intermediate and final

product.
2. Processes are made up of sub processes and each sub process has its own process model.

3. A process has entry as well as exit criteria which controls and monitors the beginning and

completion of an activity.
4. A process includes guidelines and it forces uniformity in all activities.

5. Many technical and managerial issues are needed to develop a software.

2.2 CHARACTERISTICS OF SOFTWARE PROCESS

A software process has so many characteristics which have been listed below:

1. Comprehensiveness: The process should be easy to understand the user.

2. Visibility: The progress of the process should produce clear results.

3. Robustness: The process should continue even if there is a unexpected problem.

4. Supportability: The process should be such as to support the process activities. It should also

make the testing easy and it should be able to produce the software easy to maintain.

Characteristics

Software Process

Usability

Provide Feedback

Rapidity

Predictable

Reliability Optimality

Acceptability Scalability

Supportability Adaptability

Robustness

Visibility

Comprehensiveness

5. Acceptability: The process should be acceptable to the engineers and it should be usable.

Fig. 2.1 Characteristics of Software Process

6. Reliability: The errors in the processes should be avoided or trapped before they result in errors

to the product.

7. Predictable: The outcome of the project should be predicted before the project is completed.

8. Rapidity: The process of delivering the system with given specifications should be rapid.

9. Optimality: The process should be able to produce high quality software at a very cheap rate.

10. Scalability: It should be applicable for large scale software projects.

11. Adaptability: The process should adaptable to the changing requirements.

12. Usability: It should have proper user interface and adequate document.

13. Provide feedback: There must be feedback information for improvement.

2.3 PROJECT MANAGEMENT PROCESS

2.3.1 Definition

It can be defined as an activity to achieve an objective through the wisely use of knowledge, skills,

tools and techniques by the Project Manager.

Project Management is an artistic use of various resources so that the project is completed on time

and within budget. It should provide satisfaction to the End user. Project Management is combination of

control, Leadership, Team work as a unit, resource management etc.

Process Groups

For the successful completion of a project; a proper system of different activities need to be

followed. These processes can be placed into five inter-related process groups: 1. Planning, 2.

Organisation, 3. Staffing, 4. Directing, 5. Controlling.

The main job of management is to enable a group of professional to work towards a common goal.

1. Planning: This is an important part of project management. The following points are kept in

mind by the project management.

(a) What objectives are to be achieved?

(b) What resources are needed?

(c) How and when the resources are to be acquired?

(d) Ways and means to achieve the goal.

(e) To determine the flow of information, people and products within the system.

2. Organizing: It involves the division of duties and responsibilities among different groups in

such a way that the goals of the enterprises are achieved. This is possible only when proper planning is

done by the professional within the groups. Best organization means best results in the end.

Planning Directing

Staffing

Project
Management

Organizing

Controlling

3. Staffing: It deals with hiring of qualified and well trained personnel for the positions that are

recognized by the organizational structure. It carries the process of recruiting, hiring, training, rewarding,

retaining, compensating, developing and promoting employees.

4. Directing: It is the process guiding and leaving the subordinates so that they may understand

and identify the organizational structure and the goals to be achieved by the enterprise.

5. Controlling: This step includes the process of measuring and correcting activities. The

performance of each group is measured against plans and if there is any deviation, then corrective actions

are taken to achieve the desired goal.

Software Project Management is based on sound technical skills and Management Skills. The

Technical Process of software development depends on the application of sound management principles.

It is not possible for one person to handle today‘s large and complex programs therefore team work is

necessary under the leadership of the project manager.

Components of Project Management Process

Fig. 2.2 Components of Project Management Process

2.3.1.1 Characteristics of Project

A project is a temporary endeavor which is taken to provide a unique product or service. A project is

different from production work in the sense that all projects have a beginning and an end. Projects are of

different size. If can be quite small such as the repairing of a sofa set. Projects can be too big involving

thousands of people and investing large sum of money. A project can take place at any level of

organisation or even can include the whole organisation. A project can be of small duration (days or

weeks) or long duration (to be completed in several month years).

Projects are of two types:

(i) Temporary Projects: Each and every project has a beginning and an end. The project can be

closed due to the following reasons:

(a) Project‘s objective is achieved.

(b) When if become, clear that it is difficult to achieve the objectives in a practical way.

(c) The project is no longer required now.

(ii) Unique Projects: A project becomes unique when if tries to improve upon what was done in

the past. Everything is planned and organized to bring a new product with new specifications.

A successful completion of a project demands better planning, well defined organization technical

monitoring, project scheduling, cost, time and effort estimations. The proper measurements and metrics

make a project worth its price and qualities. Composition of teams, assigning different tasks, providing

resources and establishment of project standards are the major characteristics of a good project

2.3.1.2 Project Manager Manages the Project

Project Manager

The project manager is the most important individual who uses both the process and set of tools and

techniques to define the aims and objectives of the project. The project manager plans the work to achieve

the goals. He leads the project and support teams, monitors progress and so manages everything that the

project is completed in a satisfactory way.

The software project manager keeps an eye on day by day operations. He can have the responsibility

for multiple projects. The need for a good project manager has risen properly in the industry and

commerce. Project manager is the central axis of the project-based organizations because it is establishing

itself both as a professional career path and a way of controlling business.

The main responsibility of the project manager is to develop project plans including the work

breakdown structure, time estimated, planning resources, training plan, risk management plans and

identifies other plans. He uses PERT chart/Gantt chart etc. for scheduling all the tasks. The main

responsibilities of the project manager are:

1. Define Goals: He defines goals, plans and monitor‘s tasks and resources. He recognizes and

find solution to the issues and in addition to it controls costs and budgets.

2. Leads System Development: The project manager showed have a good understanding to the

project management task and he leads system development on an expert system developer.

3. Manages and organizes the primary resources needed to complete the project. He interacts with

people linked to the project and mobilizes resources and equipment very well.

4. Control and co-ordinates every aspect of the project and motivates the team members to

achieve the project objectives.

To conclude we can say that the project manager, plays a vital role in selecting everything and

organizes, plans and controls the development process. He communicated with different persons,

participants in meetings and gives presentations.

2.3.2 Four P’s in Project Management

A successful venture is the one where the project manager successfully builds the right product using

the right process for the right project with the involvement of efficient people.

People

Project Product

Process

Fig. 2.3 Four P’s in Project Management

1. People: The skillful and efficient people are the greatest asset of a software organization. The

people represent the intellectual capital and efficient managers get best out of their investment in people.

Success comes to those organizations which respect the people in the project team. The following people

are involved in the software process:
(i) Senior Managers: Defines the business issues.

(ii) Project Managers: Who man, motivate, organize and counting the programmers?

(iii) Programmers: Who deliver the technical skills needed to develop a product?

(iv) Customers: Who specifies the requirements?

(v) End users: Who actually interact with the software once it is developed?

The people who work in a project have to work as a cohesive group and contribute their best to the

project. They will have to be organized because the team structure has a direct influence on the product

quality and project productivity. The project manager has to solve a lot of problems with the help of the

people in his team in the most effective manner. He has to motivate plan and organize the work of the

programmers for the proper functioning of the work. The managerial activities of the project manager and

Four P‘s in
Project Management

his leadership skills have a great influence in building a letter team. He must have the client management

skills too. He should be able to communicate effectively with his clients.

2. Product: The software product is a tangible item that is produced by a project according to the

required specifications. The project manager has to identify opportunities for the use of the product. He

must explore the idea about the product in detail. For this scope of the project must be established.

Software Scope: The software product must be built in such a way to fit into a larger system. What

constraints are needed must be known in advance. Software project scope must be unambiguous and

understandable at the management and technical levels. Quantitative data are stated explicitly, Limitations

are noted and mitigating factors are described.
Problem Decomposition: It is an activity that is important for software requirement analysis.

Decomposition of the problem is applied in two major areas:

(i) The functionality which must be delivered

(ii) The process which will be used to deliver it. Software functions are evaluated and refined to

furnish more detail prior to the beginning of estimation. As cost and schedule estimate are

functionally oriented; some degree of decomposition is often useful.

3. Process: The project manager must decide to select the process model which is most

appropriate to be produced by the project team the first requirement is to build the project environment in

while the software team works. The attributes of the product must be kept in mind. After the selection of

the process model, the preliminary plan is established and process decomposition begins the organization

adopts a set of framework activities which include:

(i) Customer communication

(ii) Planning

(iii) Risk analysis

(iv) Engineering activities

(v) Documentation and Training

(vi) Customer evaluation etc.

A software team must have the degree of flexibility in selecting the software engineering paradigm

which suits well for the project. A relatively small project similar to the post efforts is chosen. If the

deadline is very tight then an incremental strategy is adopted. Similarly projects with other characteristics

are selected. In the end a more complex project with a broader scope and significant business impact is

adopted.

4. Project: The software project management activity is just like an umbrella activity within the

software engineering process. It begins before the start of any technical activity and continues throughout

the definition, development and support of computer software. The project management activities include:

(i) Measurement and Metrics

(ii) Management activities

(iii) Project planning

(iv) Scheduling

(v) Tracking

(vi) Risk management activity

To avoid problems in the project activities, the project team follows the five past common-sense

approach i.e. (i) Start on the right tool, (ii) Maintain Momentum, (iii) Track process, (iv) Mask smart data.

The inter relationship between 4 P‘s is best illustrated with the diagrams as under:

Software Process

Software Process

Process
Management

Process

Product
Engineering

Process

Development
Process

Project
Management

Process

Configuration
Control
Process

Software-Project

(A) Inter-Relationship between 4 P’s

Project I Project II Project a Project n

(B) Inter-Relationship between Process & Project

(C) Process Categories

2.3.3 Activities of Project Management

The following are the major activities which are to be performed by the Project Manager for

successful management of the software project:

1. Proposal Writing: These are no set rules or guidelines for proposal writing. It only depends on

the professional skills and experience proposals describe the aims and objectives of the project and the

manner in which it will be carried out. If the proposal writing is effective; only then it will be accepted

and contract will be awarded.

2. Project Planning: It is just like a Guide Map which guides the development team towards the

achievement of goals. Project plan keeps the following points in mind.
⚫ Identifying different activities

⚫ Setting of Goals

⚫ Identifying the final result in the form of deliverables to be produced by the project.

3. Project Scheduling: It involves the following things

People
Perform Software

Process

Software
Project

Product

⚫ Breaking the main project into smaller tasks and identifying activities

⚫ Estimating resources for these activities

⚫ Judging the time required to complete these activities

⚫ Allocation of people to different activities and coordinating their tasks.

⚫ Full utilization of human resources

4. Project Cost Estimation: This activity is concerned with guessing and calculating the

resources required completing the project plan.

5. Project Monitoring: In this activity the project manager check the progress of the project from

time to time and compares the actual and planned progress on costs. If there is any deviation then project

manager takes corrective steps.

6. Project Review: This activity is concerned with observing the overall progress and technical

development and to study whether the project‘s status is in accordance with the aims and objectives of the

organization commissioning the software.

7. Personnel Selection and Revaluation: The project manager selects a balanced team of

experienced employees and youthful fresher‘s. It is necessary that the services of the staff are utilized

effectively.

For selecting personals, a project manager has to keep in mind the following steps:

⚫ Project Budget

⚫ Impossible to appoint new staff

⚫ Providing Training to employees

8. Project Report Writing: A Project Manager prepares Project Report. He is responsible to

submit this report to both the client and contractor organization. He must have the written as well as oral

skills to present his report in a very effective way. The language of the project report should be very

simple and clear to understand.

2.3.4 Issues in Project Management

There are so many issues which are to be kept in mind in the Software Project management. There

are specific goals that are to be achieved. Certain Laws and Principles have to be followed. The

difficulties and challenges which stand in the way of management have to be overcome.

Goals

1. To develop the software within the specified budget and within the planned resources. It should

be economically justifiable.

2. Time schedule is of utmost importance. The software should be produced on time and is

ensured to deliver on time.

3. To develop the software according to the parameters and requirements of the user.

Principles

The following are the principles that are to be followed:

1. Before starting the project, aims and objectives should be clearly understood.

2. The project manager should understand various constraints which may be of hardware,

software, cost or any other type of constraints.

3. Making plans in advance to achieve the goals in a better way. Cost estimation, Need for human

resources and other factors should be planned well.
4. The project should be monitored so that no problem goes unnoticed.

5. Adjustments, modifications and appropriate changes as and when necessary should be made for

appropriate result.

6. A healthy and good work environment should be provided so that each member gives his/her

best performance.

Difficulties and Key Challenges

Software project are unmatchable and developed.

1. Redundancy Problem: Software projects are unmatchable and developed only once. They face

redundancy problem in some cases.

2. Multiple Solutions: It becomes very difficult to decide which way to go when there are

multiple solutions for a given problem.

3. Difficult Cost Prediction: It is difficult to predict personnel cost because they have different

capabilities.

4. Technological advancement in hardware and software technologies creates a big obstacle in the

development of the software.
5. Software is very difficult to monitor due to its intangibility.

6. Changes in software specifications and design can take place during any phase of software

development.

7. Not Well Designed: The responsibilities of different team members are not sometime well

defined. The user requirements are not precisely defined.

All these difficulties need to be overcome so that the software is developed within the specified time

and estimated costs and fulfills the user requirements.

2.4 SOFTWARE CONFIGURATION MANAGEMENT PROCESS

Introduction

Software configuration management or in short SCM is the discipline of identifying, defining and

controlling changes throughout the life cycle. It includes revision control and the establishment of

baselines. Sometimes it so happens that changes arise due to near business or market conditions and the

atmosphere so created requires a change in the final product. New user requirements also need

modifications of data or functions produced by the software. Other reasons may be business growth,

downsizing, cost and time constraints. SCM manages changes in the intermediate products in a controlled

manner so as to maintain the integrity of the product. The traceability is also maintained and the

development of the product is made more manageable.

Software design may change at different points of time like after testing phase or coding phase. The

main points or goals of SCM are as follows:

1. Configuration Identification: The structure of the product is identified and then its

components and their types are also identified. CCM then makes these products unique and accessible in

some form.

2. Control: Implementing a controlled change process. For this a change control board is set up

which approves or rejects all change requests. It answers consistent software by the creation of a baseline

product.

3. Configuration Status Accounting: Recording and reporting the status of the components and

change requests. It collects all information and vital statistics about the status of the development process.

4. Auditing and Reviewing: Validating that the configurations contain all the intended parts are

sound. It keeps consistency with respect to specifying documents and ensuring that the product is a well-

defined collection of requirements, architectural specifications and user manuals.
5. Build management, process management and environment management all ensure adherence to

the organization‘s development process.

6. Facilitating team work and making sure that every defect has been tracked back to the source.

Software Configuration Items

It is one of the smallest unit of change. EEE defines it as ―an aggregation of hardware, software or

both that is designated for configuration management and treated as a single entity in the configuration

management process‖.

Changes in Business
Requirements

Changes in Technical
Requirements

Changes in User
Requirements

Software Model

Project
Plan Test Code Data

Other
Documents

Base lines

Whenever there is a need for a change, a basis for the change must be clearly known to making

changes. A baseline helps to control change. IEEE defines a baseline as a specification or product that has

been formally renewed and agreed upon that thereafter serves as the basis for further development and

that can be changed only through formal change control procedure.‖

Activities of SCM

The various activities involved in configuration management are:

⚫ Configuration identification: The structure of the product is identified and then its

components and their types are also identified. CCM then makes these products unique and

accessible in some form.

⚫ Change control: Implementing a controlled change process. For this a change control board is

set up which approves or rejects all change requests. It answers consistent software by the

creation of a baseline product.

⚫ Configuration audit: Validating that the configurations contain all the intended parts are

sound. It keeps consistency with respect to specifying documents and ensuring that the product

is a well -defined collection of requirements, architectural specifications and user manuals.

⚫ Configuration status reporting: All these activities ensure that all the changes are properly

implemented.

Changes in Software Development

— Diagrammatic Illustration.

Fig. 2.4: Diagrammatic Illustration of Changes in Software Development

COURSE: SOFTWARE ENGINEERING

UNIT 3: PROJECT PLANNING

3.1 Software Project Planning

3.1.1 Main Objectives

3.1.2 Principles of Project Planning

3.1.3 Components of Project Planning

3.1.4 Activities in Project Planning

3.2 Software Project management Planning

3.3 Software Cost Estimation

3.4 Software Sizing

3.4.1 Approaches/Types of Sizing

3.4.1.1 Lines of Code

3.4.1.2 Function Point

3.4.1.3 ―Fuzzy Logic‖

3.4.1.4 Change Sizing

3.5 Problem Based Estimation

3.6 Process Based Estimation

3.7 Cocomo-Model (Constructive Cost estimation Model)

3.8 The Software Equation

3.9 Project Scheduleing

3.10 Basics of Software Measurements

3.11 Types of Software Measurement

3.12 Criteria of Measurement

3.13 Process of Measurement

3.14 Basic Concepts of Software Metrics

3.15 Importance of Software Metrics

3.16 Categories/Types of Software Metrics

3.16.1 Projects Based Metrics

3.16.1.1 Product Metrics

3.16.1.2 Process Metrics

3.16.1.3 Resource Metric

3.16.2 Design Based Metrics

3.16.2.1 Traditional Metrics

3.16.2.1.1 McCabeCyclomatic Complexity (CC)

3.16.2.1.2 Source Lines of Code

3.16.2.2 Object Oriented Metrics

3.16.2.2.1 CK (Chidamber&Kemerer’s Metrics Suite)

3.16.2.2.2 Mood (Metrics for Object Oriented Design)

3.17 Software Metric Approach

3.18 Guidelines for Metrics

3.19 Qualities of Good Software Metrics

3.20 Software Quality

3.21 Attributes of Quality Software

3.22 Software Quality Management System

3.22. 1 Software Quality Management Principles

3.23 Software Quality Assurance (SQA)

3.23.1 Importance of Software Quality Assurance (SQA)

3.23.2 Activities of Software Quality Assurance(SQA)

3.23.3 Software Quality Metrics

3.23.4 Principles of SQA

3.23.5 Software Quality Assurance Standards

3.24 Software Quality Control (SQC)

3.25 Difference between quality assurance and quality control

3.1 SOFTWARE PROJECT PLANNING

Project Planning is the most important aspect of software project management. Project planning

prepares a list of activities that need to be done to achieve the goal. The main purpose of project planning

is to clarify the goals, needs and constraints. The success of a project depends upon its planning because

poor planning is a sure ticket to failure and poor quality result with high maintenance cost. A good

planning prepares a road map in advance what to do, how to do, when to do, who is to do and how much

will it cost to complete the project.

3.1.1 Main Objectives

Project Planning is a well-organized and an integrated process which keeps in mind the ultimate goal

to achieve:
⚫ Project Planning aims at better utilization of resources.

⚫ To finish the project in time.

⚫ Defines roles of different team members.

⚫ Assigns duties and responsibilities.

⚫ It determines project constraints.

A large number of people are involved in the project planning. These include

(i) Senior Management which is responsible for employing personnel‘s and providing resources.

(ii) The project management team which includes project managers and developers. They are

responsible for planning determining and tracking activities, selecting all ways and means to

achieve the goal. The project manager is the key to successful project planning.

3.1.2 Principles of Project Planning

The following principles or fundamentals of software project planning are to be followed:

⚫ Planning is the basic need: The software project management process begins with a group of

activities called Project Planning. This is one of the most important management activity. It is necessary

for modern business because helps in better co-ordination and reduces/removes uncertain. Planning is a

never-ending process.

⚫ Risk Analysis: It is the duty of the Senior Management and Project Management to study all

the risks and hindrances that may team affect the final output.

⚫ Tracking of Project Plan: The project plan should be continuously tracked and modified as

per the requirements.
⚫ Quality Products:Those process should be identified which can ensure quality in software.

⚫ Description of Flexibility: Planning should be flexible so as to accommodate new changes the

project is in progress.

3.1.3 Components of Project Planning

Different types of projects can have different components depending upon their working and

implementation. Here are some common and powerful components of project plan.
1. Project Scope: Each project has its own wide project scope.

2. Project Schedule: Every project has its own time frame within which it must be completed.

3. Project team organization: Each project has a well-organized team under a project leader.

4. Technical Description: Each project has a well-organized team under a project leader.

5. Project Standards, Procedures and proposed technical tools: For success, completion of the

project, it must have all the standards, process and technical tools.

6. Quality Assurance Plan: Each project has the assured plan for successful completion of the

project.
7. Special Development Tools and Techniques are needed.
8. Configuration Management Plan: For the long range planned projects.

9. Documentation Plan: A project must have the documentation which is well-planned for the

maintenance of the project at the later stage.

10. Data Management Plan: There should be Data Management Plan for every working project

in the short range planning.

11. Resource Management Plan: There must be a Resource Management Plan to implement the

project in a successful manners.

12. Test Plan: A detailed and ordered test plan is needed for the successful testing of two project.

13. Training Plan: It must be set for the users for the successful completion of the project and

working of the project.

14. Security Plan: There should not be any un-authorized access. For this security plans like the

secret purpose password should be established.

15. Risk Management Plan: A Project Manager must consider all the constraints and possibilities

to avoid and type of risk management.

16. Maintenance Plan: Maintenance procedures and plans are needed to avoid any type of threat

during working hours.

Planning is done on both formal and informal basis. The main aim is to provide the guidelines for

decision making are based on future expectations.

3.1.4 Activities in Project Planning

Project Planning has various aspects like estimating, scheduling and assigning the project resources

in such a way to deliver the find product of desired suitable quality. However activities have an important

role which can determine the success of the project. The various planning activities team members will

need to do are given as under:

⚫ The recruitment of the team and building of the team as a unit.

⚫ To organize the project

⚫ To know and confirm the start and end dates by preparing a project schedule.

⚫ To create the project budget.

⚫ To know about the customer requirements for the final result.

⚫ Limiting the project scope boundaries and defining them properly.

⚫ To write a description of the find result.

⚫ To assign duties

⚫ To assign accountability.

A typical project plan can include the following activities which have been briefly discussed as

below:

1. Project Scope Definition and Scope Planning: The assumptions, constraints and user

expectations along with business needs, technical needs and project deliverables etc are documented.

Project objectives and any other thing that defines the final product requirements is also documented.

2. Quality Planning: This is an important part of project planning. Quality of the final product

can‘t be over looked. For this various factors that influence the quality of the final product are taken its

account.

3. Project Activity: Definition and activity sequencing: All activities are defined in advance

which are required to deliver the product by producing the various product deliverables.

4. Time, Effort and Estimation of Resources: Effort, time and resources required are clearly

estimated and documented in this step. Many techniques like function points, lives of code, complexity of

code, Bench mark etc. can be used to calculate effort.

5. Risk Factor Identification: One should be ready to face the unexpected things in life. It is

very important to pin point the risk factor based on the assumptions, constraints, user expectations and

challenging conditions.

6. Schedule Development: Project Scheduling is one of the main task of project planning. Time

frame work is to be prepared for each of the inter-dependent activities. It will have an influence on the

cost estimates and the cost benefit analysis.

7. Risk Management Planning: In this process risk factors are identified and analyzed. A risk

resolution plan is prepared to minimize the impact of the risk factor on the project.

8. Cost Estimation and Budgeting: The costs involved in the execution and implement of the

project is estimated and only then budget allocation is done for different phases of the project.

9. Organizational & Resource Planning: The main objective of resource planning is the smooth

and efficient running of the project. There are many types of resources like equipment, personnel,

facilities, money etc. These resources will have to be fully utilized to achieve the goal.

10. Project Plan Development & Execution: The information gathered from all planning

processes is used and each of the project tasks and activities are monitored and controlled from time to

time delays are analyzed and the project plan is adjusted accordingly.

11. Performance Reporting: The progress of each of the tasks is compared with the schedule.

Various Techniques such as EVM (Earned Value Management) can be used to measure the performance.

Tools like PERT Charts, GANTT Charts, Logical bar charts, Histograms, Pie charts etc. can be used to

report the performance.

12. Planning Change Management: If the need arises then certain aspects of the project can be

changed, but the changes should not have any negative effect on the environmental or the performance.

Changes should be studied properly and only then the project plan may be modified.

13. Project Rollout Planning: The success of the project depends on the project rollout and

implementations. Where a project is rolled out; it has greater impact on the entire technical systems and

the business systems. The users should be read to accept it and use it effectively. The users need to be

trained to adapt to the new system.

3.2 SOFTWARE PROJECT MANAGEMENT PLANNING

This is an important part of project management. The following points are kept in mind by the

project management.

(a) What objectives are to be achieved?

(b) What resources are needed?

(c) How and when the resources are to be acquired?

(d) Ways and means to achieve the goal.

(e) To determine the flow of information, people and products within the system.

Organizing

It involves the division of duties and responsibilities among different groups in such a way that the

goals of the enterprises are achieved. This is possible only when proper planning is done by the

professional within the groups. Best organization means best results in the end.

Staffing

It deals with hiring of qualified and well trained personnel for the positions that are recognized by

the organizational structure. It carries the process of recruiting, hiring, training, rewarding, retaining,

compensating, developing and promoting employees.

Directing

It is the process guiding and leaving the subordinates so that they may understand and identify the

organizational structure and the goals to be achieved by the enterprise.

Controlling

This step includes the process of measuring and correcting activities. The performance of each group

is measured against plans and if there is any deviation, then corrective actions are taken to achieve the

desired goal.

Software Project Management is based on sound technical skills and Management Skills. The

Technical Process of software development depends on the application of sound management principles.

It is not possible for one person to handle todays large and complex programs therefore team work is

necessary under the leadership of the project manager.

3.3 SOFTWARE COST ESTIMATION

Cost estimation is the most important task of a project. An accurate and scientific estimation of cost,

effective usage of resources and time schedule is the basis for a successful completion of a project. Cost

over-run may enrage. The customer and it can lead to the cancellation of the project. There are some

factors such as complexity of the project, time availability, reliability and software size which mean a lot

of cost estimation. It can be done during any phase of software development. It depends upon software

information regarding user requirements, design and source code etc. It becomes easier to estimate cost in

the later stages as more information becomes available. To avoid unforeseen delays and risks; cost

estimation should be done throughout the life cycle of the project. The following diagram accurately

depicts how the cost estimation becomes more and more accurate as additional software information is

pouring in.

4x

2x

X

.70x

.50x

.25x

Feasibility system design coding & testing

Fig. 3.1: Accuracy of Cost Estimation

The diagram clearly shows that as we proceed from requirement phase to coding and testing phase

via system design phase; cost estimates becomes more accurate.

Cost Factors

The following factors influence the cost estimation:

1. Experience: If the software developer is well trained in programming language, operating

system and hardware the cost will be less.

2. Product Complexity: The cost of software project rises up with the level of complexity. Three

levels of product complexity are organic, semi-detached and embedded programs.

3. Project Size: A large sized project is more costly as compared to a small sized project. More

effort is required for a large sized project.

4. Available Time: If development time is decreased, then the software project requires more

resources and effort and thus the cost increases.

5. Programmer Ability: Efficient and capable software programmers bring down the expenditure

whereas inefficient programmer increases the cost. Therefore, it is necessary that a programmer should be

well-trained.

Requirement Analysis Detailed Design Accepted Software

6. Level of Technological Know: How also has a great influence on cost estimation? Modern

practices, System analysis, Design techniques etc. have a great effect on cost estimation.

7. Reliability: Reliability of the software project depends on the level of accuracy, robustness and

consistency etc. cost estimates depend on the level of analysis, design, implementation and verification

effort.

The cost estimation should be well-planned. It should be reviewed at regular intervals. The software

process should be continually updated and improved upon.

3.4 SOFTWARE SIZING

Sometimes a problem is too big to the understood in a single attempt, similarly software cost

estimation is not simple as it appears to be a complex problem like software cost estimation is broken up

into fragments to achieve an accurate cost estimate.

Mainly two approaches are adopted:

(i) Problem based estimation

(ii) Process based estimation

A project planner must establish the estimate of software size which is considered to be the

Quantitative result of the software project. The software is divided into smaller parts because it is

convenient to calculate and know about the size of the smaller components. They are less complex. The

addition of these smaller components gives an idea of the overall estimate of software size.

Sizing Approaches: There are two types of approaches for estimating size:

1. The Direct Approach: Measures sizes in terms of (LOC) lines of code.

2. The Indirect Approach: Measures in terms of functional point (FP).

Parameters: The following parameters influence the accuracy of size estimates:

1. The degree of properly estimating the size of the software.

2. The capability of converting Size Estimate to human effort, calendar time and money.

3. The ability of the software team.

4. The stability of product Requirements and the overall environment supporting the development

process.

3.4.1 Approaches/Types of Sizing

The project planner finds that, the estimation of size is very important in determining the cost

estimation. This problem is also known as Software Sizing. To solve this problem, the following methods

can be used:

1. Fuzzy Logic Sizing: The planner identifies the application type and its magnitude on a

quantitative scale. The magnitude is then refined within the original range.

2. Function Point Sizing: In this method the functionality produced by the software system is

measured the function point estimates.

3. Standard Component Sizing: Standard components can be in the form of modules, screens,

reports, lines of code and soon. The number of time a component occurs is estimated and the historical

data helps to find out the delivered size of each standard component.

4. Change Sizing: Through this method, already existing project is modified and the number and

type of the modifications are estimated.

3.4.1.1 Lines of Code

It can be defined as the number of delivered lines of code. Lines of code are a measure to calculate

productivity metrics. LOC is used as follows:

(i) As an estimate variable to size each and every element of the software.

(ii) It is used as baseline metric obtained from the previous projects and used with estimation

variables to develop projections for cost and effort.

Line of code is the most commonly used software size metrics. LOC depends on the programming

language. In assembly language lines of code will be higher as compared to lines of code in high level

language like C++/Java.

In the earlier stages of development, less information becomes available where as full information

becomes available only at the end of the project. So exact number of lines of code can be determined after

the completion of the project.

Guidelines

1. One line of code is for One Logical line of code.

2. Lines of code delivered as a part of software are included.

3. Lines of code for drivers, test stubs and other support software are excluded.

4. Software code by software developer is included whereas the code created by the application

generators are excluded.

5. Declarations in the programme are counted as LOC whereas comments in the programme are

not counted as LOC.

Keeping in view the historical Data, The project planner estimates. Three values optimistic S
opt

, most

likely (S
m
) and pessimic (S

pess
) for each size.

The equation (S
opt

+ 4 × S
m

+ S
pess

) is used to compute expected value. The following example of a

software will clarify how the estimating size is determines. Here in the example software is a combination
of six functions — (i) user face, (ii) word processing, (iii) file storage and retrievals, (iv) Data base
management, (v) Word processor and (vi) Peripheral control.

Estimating Size

Function Spess Sm Sopt Expected Size

S =
1

(Sopt + 4 × Sm + Spess)

6

User interface 1500 1800 2100 1800

Word Processing 1800 2400 3000 2400

File Storage & Retrievals 1700 2100 2400 2083

Data base management 2500 3000 4000 3083

Word Processor 1200 1600 2000 1600

Peripheral Control 1300 1700 2000 1683

Total Expected Lines of Code = 12649

Table showing method of calculating Size Estimation

The developer estimates the size of each and every function:

S for user interface =

S for word processing = and soon

We see that size of the software in terms of

LOC is = 12649

3.4.1.2 Function Point

Function Point lines of code are the most important methods for size estimation. The function point

metric was devised and suggested by A.J. Albrecht. This is used to measure functionality delivered by the

system; Function point estimates in determining estimate effort required to design, code and test software,

predict the number of errors and it so forecasts the number of components being used in the system.

The measures of software information domain value and software complexity are the two things

needed to find out function point through an empirical relationship.

Software complexity is of three categories; of simple, average and complex level.

Information domain value is a combination of the following points.

1. Number of external inputs or (EI): Users and other applications are a source of providing

application oriented data.

2. Number of external outputs or (EO): Theserefer to Reports, Screens, Error, messages etc.

The user gets information from each external output. Individual data views are not counted separately.

3. Number of external inquires (EQ): Online inputs are referred to as external inquiries. These

in turn. Generate responses in the form of online outputs. In this case each and every district inquiry

matters and is counted separately.

4. Number of internal logical files/(ILF): Logical grouping of data present in the application

boundary e.g. master file as part of database is known as internal logical file.

5. Number of external interface files (EIF): Logical grouping of data which is external to the

application e.g. Data files on tape or disk is known as external interface file.

The complexity value for each count is determined after gathering information about information

domain value function point method helps in deter mining about a particular entry whether if is simple,

average or complex.

Estimating Functional Points: Functional points in software are estimated by the equation as given

below.

F.P = Count Total (o.65 + 0.01 × (f1)]

Count Total = Sum of all F.P. entries

fi = (i = 1 to 14) are value adjustment factors.

The value adjustment factors are based on the answers to 14 Questions. These questions are

answered using a scale of 0 to 5 where

0- means – No influence

1- means – incidental

2- means – Moderate

3- means – Average

4- Significant

5- Essential

Weighting Factor Table 1

Measurement Parameter Count Simple Average Complex F.D. Count

Number of User inputs 21 × 3 5 7 21×5= 105

Number of user output 15 × 2 4 6 15×4= 60

Number of user inquiries 25 × 4 5 6 25×5 125

Number of files 7 × 8 10 14 7×10 70

Number of external interfaces 3 × 5 7 10 3×7 21

Count Total 381

Value Adjustment Factors Table II

Sr. No. Factors Disadvantages

1. Backup and Recovery 2

2. Data Communications 2

3. Distributes Processing 1

4. Performance Critical 3

5. Existing operating environment 2

6. Online data entry 3

7. Input transactions over multiple screens 4

8. Master files updated online 3

9. Information domain value complex 4

10. Internal processing complex 2

11. Code design for reuse 3

12. Conversions/installation in design 3

13. Multiple installations 4

14. Application design for change 4

 Value adjustment factor 40

Computations for Function point: To estimate size in terms of function point table I and Table II

are used as follows
FP count = Count X weighting factor (AV)

From Table I FP for number of used inputs = 22×4=88

using Table I and II F.P. count Total × [0.65+0.01×?fi]
= 381× [0.65+0.01×40]

= 381× [0.65+0.40]

= 381× 1.05

= 400.05

= 400

3.4.1.3 ―Fuzzy Logic‖

A project estimate is only as good as the estimate of the size of the work to be accomplished.
Different approaches to software sizing are given as under:

1. Lines of codes

2. Functions point

3. Fuzzy logic

4. Change sizing

Fuzzy Logic sizing is a type of approach in which the project planner must identify the application

type and its magnitude on a quantitative scale. After this the magnitude is refined which in the original

range.

―Fuzzy Logic‖ approach applies the approximate reasoning techniques that are the corner stone of

fuzzy logic. The personal experience can find a place but the planner should also keep on eye on the

historical database of the projects so that estimates can be compared to original/actual experience.

3.4.1.4 Change Sizing

Sizing signifies the project planner‘s first major challenge. Sizing steps are essential to make valid

comparison cross systems or within systems. Productivity can be computed with the help of a software

sizing measure.

The change sizing approach is followed only when there arises a need for changes in the already

existing project specifications. This modification is used in the new project to bring a required change in

its accomplishment. The planned estimates, the number and type (e.g. reuse, adding code, changing code,

deleting code) of modifications that must be finalised. By the application of an ―Effort Ratio‖ for each

type of change, the size of the change may be guessed and this new estimate will help to produce the

software according to the user requirement.

3.5 PROBLEM BASED ESTIMATION

LOC and F.P. data are used in two ways:

⚫ As an estimation variable to ‗size‘ each element

⚫ As baseline metrics gathered from past projects to develop cost and effort projections.

Although LOC and F.P are clearly different techniques but they have many common characteristics.

After a bounded statement about software scope, the project planner decomposes the software into

problem functions so that they may be estimated individually. LOC or FP is then estimated for each

function.

Using baseline productivity metrics, proper estimation variable and cost or effort for the function is

calculated.

LOC and FP estimation are different so far as their technique of decomposition and the target of the

partitioning is concerned when LOC is used the decomposition approach supposes that all functions can

be broken up into sub functions. LOC estimates depend on the degree of partitioning. For FP estimates

decomposition works in a different manner. Instead of focusing on function, it estimates on the basis of

information domain characteristics i.e. inputs, outputs, data files, inquiries and external inferences. In

addition to 14 complexity adjustment values are estimated and a FP value is derived that can be linked to

past data and this is used to generate an estimate.

3.6 PROCESS BASED ESTIMATION

In order to achieve objectives in software project developed a specified and certain process is

followed. The estimation of effort in a software is to base the estimate on the process to be followed. The

whole process is divided into smaller tasks and after the identification of these tasks; the effort for each

task is estimated. These smaller tasks are such as analysis, design and coding etc. These tasks are ordered

according to the specified sequence. The project managers take the product size as a major productivity

indicator and they become capable of tracking a project. A number of activities are performed in process

based estimation. These activities can be listed as follows:

1. Customer communication

2. Planning

3. Risk Analysis

4. Engineering (analysis/Design)

5. Construction release and so on

It is the duty of the project planner to combine the functions and activities to calculate the effort

required for each function. The labour rates which vary from task to task are applied. Top level

management activities are more expensive on compared to activities performed by the junior staff in the

beginning of the framework activities. The accuracy in process based estimation depends on many

parameters.

⚫ The degree of sizing of the software and the proper estimation.

⚫ Changing size estimate into human effort, calendar time and money.

⚫ Ability of a software team

⚫ The stability of product requirements

⚫ Environment supporting the development process.

The software considered for process based estimation is divided into functions and for each function

a set of tasks and activities are taken last of all, the effort for each function and activity is calculated.

Activity Customer
Communication

Planning Risks
Analysis

Engineering Construction
Release

CE Total

Task Analysis Design Code Test

Function 1 0.50 2.00 0.40 5.00 n/a 7.90

Function 2 0.70 4.00 0.60 2.50 n/a 7.80

Function 3 0.50 3.00 1.00 3.50 n/a 8.00

Function 4 0.50 3.00 0.75 2.50 n/a 6.75

Function 5 0.50 2.00 1.00 2.50 n/a 6.00

Function 6 0.25 1.00 0.50 2.50 n/a 4.25

Function 7 0.50 1.00 0.50 1.00 n/a 3.00

Total 0.25 0.25 0.25 3.45 16.00 4.75 19.50 - 43.70

%Effort 1% 1% 1% 7.66% = 8% 35% 11% 43% -

Table showing percentage effort for each function & Activity

3.7 COCOMO-MODEL (CONSTRUCTIVE COST ESTIMATION MODEL)

Barry Boehm gave birth to the idea of COCOMO Model in early 19805 to estimate total effort

required to develop a software project. This Model is widely used and if is based on the observation of

previously developed software projects. According to Boehm any software development project can be

categorized into three type‘s organic, semidetached and embedded depending on the development

complexity.

Organic projects: These projects are in an area in which the organization has enough experience.

These project are small in size (not more, the 50 KOLOC). Such system has small teams with prior

experience. The term members work together with through understanding and co-operate to accomplish

user requirements which are less stringent examples: Simple business system, simple inventory

management system etc.

Semi-detached: In such a project, the development team consists of a mixture of experienced and

inexperienced staff. The size of such projects is not more than 300 KDLOC

Examples: Operating system, compiler design and data base design

Embedded Projects: These projects are ambitions and novel, they have size more than 300

KDLOC. The organization has little experience developers have to achieve stringent user requirements

and these systems have tight constraints from the environment (hardware, software and people)

Example: Software systems used in avionics and military hardware, real-time command system.

COCOMO model estimates the total effort in terms of person-months of the technical project staff.

the efforts estimate includes development, management and support tasks but does not include the cost of
the secretarial and other staff. Our person month means the effort an individual can typically put in a

month. The basic steps in this model are:

1. Obtain an initial estimate of the development effort from the estimate of thousands of delivered

lines of source code. (KOLOC)

2. Determine a set of 15 multiplying factors from the different characteristics of the project.

3. Multiply the initial estimate (E
i
) with all the multiplying factors.

The initial estimate E
i
in person\-months is determined by the equation E

i
= a* (KDLOC) b. The

value of the constants a and b depend on the type of the project. KDLOC is used as the measure of the

size. COCOMO is based on the hierarchy of three models: basic model, intermediate model and advance

model.

Basis Model: In this model only the size of the project is taken in given an approximate of the project

parameters.

The Expression for calculating effort is as follows

Effort = a * (KLOC)b PM

Basic Model

Project Type Constant (a) Constant ‗b‘ E

Organic 2.4 1.05 2.4× (30) 1.05 for 30 KDLOC = 85 pm

Semi-detached 3.0 1.12 3.0× (30)1.12 for 30 KDLOC

Embedded 3.6 1.20 3.6×(30)1.20 for 30 KDLOC

Effort Calculation

By using logarithmic tables; effort can be found out. Estimation of development time (Tdev): The

formulator estimating the development time based on the effort are as follows:

Organic : Tdev = 2.5 (effort) 0.38 months

Semidetached: Tdev = 2.5 (effort)0.35 months

Embedded : Tdev = 2.5 (effort)0.32 months

e.g. if an organic type software product is estimated to 32000 lines of source code and a software engineer

gets Rs. 6000 as salary par month; then nominal effort, nominal development time and cost required to

develop the project an be calculated as

Effort : 2.4 (3.2)1.05 = 91 PM

T
dev

: 2.5 (91)0.38 = 14 months

Cost: 14× 16000 = 224000

Intermediate COCOMO Model

This model takes other relevant parameters into account besides development time and effort the

intermediate COCOMO model refines the initial estimate (E
i
) by using a set of 15 multipliers based on

different characteristics of the software development to calculate total effort in this model, the procedure

is as follows:

1. Calculate (E
i
) considering the size in terms of KDLOC.

2. Identify 15 parameters and each parameter is given a numerical value called multiplying factor.

3. Effort adjustment factor (EAF) is derived by multiplying all multiplying factors with each

other.

4. Multiply initial estimate in step 1 with EAF.

15 Different attributes called cost driver attributes determine the multiplying factors which depend

on product, computer, personnel and project attributes are shown in the table below:

Cost Drivers Rating

Very Low Low Normal High Very High
 Product Attributes:

1 RELY = Required Reliability 0.75 0.88 1.00 1.11 1.40

2 DATA = Database size 0.94 1.00 1.08 1.16 -

3 CPLX = Product Complexity 0.70 0.85 1.00 1.15 1.30
 Computer Attributes:

4 TIME = Execution Time Constraint - - 1.00 1.11 1.30

5 STOR = Main Storage Constraint - - 1.00 1.06 1.21

6 VIRT = Virtual Machine Volatility - 0.87 1.00 1.15 1.30

7 TURN = Computer Turnaround Time - 0.87 1.00 1.07 1.15
 Personnel Attributes:

8 ACAP: Analyst Capability 1.46 1.19 1.00 0.86 0.71

9 AEXP: Applications Experience 1.29 1.13 1.00 0.91 0.82

10 PCAP: Programmer Capability 1.42 1.17 1.00 0.86 0.70

11 VEXP: Virtual Machine Experience 1.21 1.10 1.00 0.90 -

12 LEXP: Language Experience 1.14 1.07 1.00 0.95 -
 Project Attributes:

13 MODP: Modern Programming Practices 1.24 1.10 1.00 0.91 0.82

14 TOOL: Software Tools 1.24 1.10 1.00 0.91 0.83

15 SCHED: Development Schedule 1.23 1.08 1.00 1.04 1.10

Determination of multiplying factor for different Attribute

Advance Model: In this model, effort is calculated as a function of programme size and a number of

cost drivers for each phase. This model covers the limitations of both basic and the intermediate model.

Both there models consider a software product as a single homogeneous entity. But most large systems

are made up of several smaller sub systems. These sub systems have widely different attributes. Some

may be organic type, some semidetached type of some embedded. Complexity of subsystems may be

different.

There are four phases in the advance COCOMO model. They are (1) Requirements Planning and

Product Design (RPD) (2) detailed design (DD), (3) Code and Units Test (CUT) (4) Integration and Test

(IT)

Each cost driver is rated as very low, low, nominal, high and very high. Multiplying factors are

assigned for Analyst capability cost driver (ACAP) for each phase of advanced model are tabulated

below:

Rating RPD DD CUT IT

Very Low 1.80 1.35 1.35 1.50

Low 0.85 0.85 0.85 1.20

Nominal 1.00 1.00 1.00 1.00

High 0.75 0.90 0.90 0.85

Very High 0.55 0.75 0.75 0.70

Rating of Cost drivers

3.8 THE SOFTWARE EQUATION

The software equation is a dynamic multi variable model that assumes distribution of efforts over the

useful life of the project. The software equation can be derived from data obtained by studying several

existing projects and it been done by collecting over 400 contemporary software projects. For the

calculation of effort, the following equation has been framed:

3

E=
Size×B0.333 / P ×(1/ t4) ... equation

LOC

Where

P = Productivity parameter which indicates the maturing of overall process and management

practices. This parameter also indicates:
(a) The level of programming languages used.

(b) The state of software environment.

(c) The skill and experience of the software team.

(d) Complexity of software application.

T = it indicates project duration in months or years

E = Efforts in person-months or person-years.

B = Special skills factor — the value of B increases over a period of time depending upon the

importance and need for integration, testing, quality assurance, documentation and

management.

Software equation has to important independent indicators they are:

I. An estimate of size (in LOC)

II. Time duration in months or years.

Potnam and myers suggested another set of equation derived from the software equation for

simplification of estimation process.

t
min

= 8.14 [LOC/P]0.43 in months for t
min

> 6 months equation-II (a)

E = 180 Bt3 in person – months for E > 20 person months eqn-II (b)

 For small programs with sizes between 5KD LOC and 15KD LOC, the value of B is 0.16 and for

programme with sizes greater than 70KD LOC; the value of B is 0.39

3.9 PROJECT SCHEDULEING

Definition

Project Scheduling can be defined as the process of effectively managing the tasks of the project by

identifying and organizing the tasks into a series of events. Project scheduling prepares details such as (i)

start dated of the project, (ii) end date of the project, (iii) milestones, (iv) specifying the resources

required and (v) tasks for the project. In ensures a harmonious completion of the project on time. It also

helps to avoid the extra cost incurred when the project gets delayed. Project scheduling tries to predict the

future. Although it is not possible to say with certainly about the length of time yet there are methods

which can increase likelihood of being close.

Principles of Project Scheduling

The most commonly adopted principles for project scheduling are as follows:

(i) Compartmentalization: The project is divided into several tasks to manage the project

effectively.

(ii) Interdependency: All the activities of the project are inter-related and not independent of each

other. Various activities are performed in a sequential manner. Some activities depend so much

on other activities that they cannot begin until the activity on which they depend is completed.

(iii) Time allocation: Another principle of scheduling is time allocation. It determines the time for

performing specified activities. It is also very important to estimate the effort required. The

project management should assign final time to each team member.

(iv) Effort Validation: The project manager assigns tasks to the team members according to their

capabilities and efforts required for the task.

(v) Defined Duties and responsibilities: The roles and responsibilities of each project team

member should be decided in advance depending on their skills and capabilities.

(vi) Defined Outcomes: According to this principle, the outcomes of every task should be

specified. A product is outcome of a task and these products are well combined in deliverables.

(vii) Defined Milestones: Mile stones be specified when task products are complete and it should be

renewed for quality.

Delaying Factors

There are various factors which are responsible for delay in the project schedule. The most common

factors are:

⚫ Unrealistic Deadlines: Sometimes the allocation of time for completing a project is not

practical because inexperienced individuals establish a wrong deadline. The project gets

delayed if deadline is not achieved.

⚫ Change in User Requirements: There is delay if user requirements are changed after the

project has already started. This disturbs the project schedule and thus more time is taken.

⚫ Under Estimation of Resources: If there is under-estimation of resources, it leads to delay in

the completion of tasks of the projects.

⚫ Lack of Analyzing Risk Factors: If risk factors are ignored during project planning and

scheduling; these risk factors put on a bad effect on the software development.

⚫ No Communication among Team Members: Lack of communication among team members

makes it difficult for the project management to complete the project on time. Personal

problems of team members also stand in the way of the completion of the project.

⚫ Lack of Action on the part of: If the management fails to take timely action and does not

understand that the project takes more time to complete; then it also becomes the reason of

delay.

Activities in Project Scheduling

Various activities are involved in project scheduling. There are to be observed sincerely. The

experience in the project area and in the scheduling. Those persons are interviewed who had experience

with similar projects. Transition between activities is taken into account uncertain resources of talent,

equipment or data are also studied so involved in project scheduling is as follow:

1. Gant Technique

2. Mile stone Scheduling

3. Pert and CPM

The Gant technique is used where production operations are highly repetitive and work performance

of different departments can be combined.

In the mile stone scheduling system the milestones are developed and established in the planning

phase.

PERT/Networking and CPM method are designed to be used in the development phases for

identifying the critical path, float and slack.

PERT Chart (Program Evaluation and Review Technique Chart)

A PERT chart is a graphical chart meant to determine the activities that from the ―Critical Path‖

which if delayed will harm the overall project and the project will be delayed. The use of PERT chart is

justifies in large projects in which activities can be divided into two categories (i) Critical activities, (ii)

Non-critical activities. The critical activities should not be delayed.

A PERT chart is a method of project management which is used to schedule, organize, and

coordinate different tasks within a project. If analyses the involved tasks and determines the time needed

to complete each task and thereby identifies the minimum time needed to complete the total project in

time.

The PERT chart methodology was first used by U.S. Navy in 1950s to manage the Polaris Missile

Project.

Advantages of PERT Chart

1. It illustrates the project in a graphic form.

2. It guesses expected time required to complete a task.

3. It provides information regarding the time expected to complete the project.

4. It describes if there is the probability of completion of the project before the date specified for

it.

5. It specifies the activities forming the critical path.

6. It provides information about start and end dates of different activities.

7. It describes the inter-dependence of one or more tasks on each other.

Steps for Creating a PERT Chart

1. Identification of different activities and milestones.

2. Recognizing sequence of Activities: Different activities are inter dependent and inter-related. It

is decided whether the activities are serial wise or concurrent and then relationship among

activities is depicts.

3. Preparation of PERT chart.

4. Estimation of Time: An activity can be shorter or longer depending upon the time required

completing it. The time estimates can be months, weeks or days hence three categories arise.

Optimistic Time: It is the shortest time needed by an activity to be completed.

Most Likely Time: It has the highest probability for the completion time required.

Pessimistic time: It is the longest time taken by an activity.

5. Critical Path Determination: Critical path for each activity is specified which determines the

time required as per the project schedule.

6. Updating of PERT Chart: If any need arises; PERT chart is modified to avoid delay or when

additional resources are to be provided.

Illusion of PERT Chart

PERT Chart

4

C F

1
t = 30 days

A
2

t = 20 days

D
3

B E

3

Fig. 3.2: PERT Chart

Milestones

In figure 1, 2, 3, 4, 5 represent the mile stones (represented by circles). The can also be represented

by rectangles. When a mile stone is completed, It gets one number higher than the previous milestone.

Each milestone is linked to other milestone by one or more arrows.

Activities

English letters A, B, C, D, E, F represent different activities. The direction of arrows shows the

sequence of activities. There are two types of activities i.e. Serial activities and concurrent or parallel

activities.

(a) (i) Activities A, C,F are serial activities taken in the same sequence. Similarly Activities B and E

are also in the same sequence.

(ii) Activities A and B are concurrent activities. Similarly C and D activities are concurrent

activities as these are performed simultaneously.

(b) Time for each activity is depicted by ‗L‘ in days. It can be depicted in weeks or months also.

Gantt Chart

There are various techniques of project scheduling, task method and tracking the schedule which

keep an eye on the activities that are completed as per the project schedule. These techniques provide

information about activities in a graphical form – through bar charts or histograms etc. It becomes easy

for the management activity. The commonly followed techniques include Gantt Chart, PERT Chart etc.

Gantt chart is in the form of a graphic diagram. This chart prepares a picture of the activities of the

project. The horizontal bars in the diagram show the total time span required. This time span is divided

into months, weeks and days. The time taken to complete an activity is shown in parts. The vertical

column shows the activities involved. The graphical chart also shows the start and end dates of each

activity. This is the reason that Gantt chart is also known as timeline chart.

 Time Span

Gantt Chart

Fig. 3.3: Gantt Chart

A Gantt chart is commonly prepared on a graph paper. If the Gantt chart is big and complex then

other applications like Microsoft fixed etc. A project manager comes to know about the status of the

activities. Gantt chart has many advantages as given below:

1. Representation of the project in a graphical form

Report Date

01/11 8/11 15/11 22/11 29/11 6/12 13/12 29/12 27/12 3/1 10/1

Preliminary
Investigation

Report
Writing

nterviews

Evaluation

Making Final

Report

g

Trainin

I

T
a
sk

s

2. It shows the progress of each activity.

3. It provides a record of the different tasks facilities.

4. It depicts milestones after each activity is completed.

5. It clarifies the tasks which are assigned to project management team members.

There can be a change in the schedule of two projects. Hence Gantt chart also varies accordingly.

The diagrammatic representation given above shows the schedule if a project:

1. The horizontal bars show the total time span in the form of months, weeks and days.

2. The time for each activity is shown in increments.

3. The vertical axis shows different tasks like preliminary members, Training and so on.

4. Shaded parts show the part of the activities that has been completed.

5. Unshaded parts show uncompleted part of the activity.

6. Horizontal bars have different lengths showing the time required to complete a specific activity.

7. Time span of one or more activities can overlap each other.

8. With the progress in the project the unshaded bars are shaded showing the completion of

activities.
9. The vertical line represents the report date on which an arrow is drawn.

3.10 BASICS OF SOFTWARE MEASUREMENTS

Measurements in everyday life has a significant role to play. Without accurate measurements; we

shall not be able to take right and timely decisions in area of production and manufacturing. Software

engineering uses the concept of measurement in a big way to estimate costs, to monitor inventories and

asses quality. This is desirable to understand and improve the software process by predicting, planning

and controlling the software projects measurements are in no way an conditional or non-value added task

but it has evolved into a very significant discipline in software engineering. This is the reason that most of

the organizations are using measurements to ensure better quality products. Software engineers use

measurements to gain insight into the design and development of the work products.

Measure, Measurements, Metrics and Indicators are the terms which are used in measuring various

aspects of software. Although they have resemblances but they are different.

Measure: It means to mention some aspect of the object in a quantitative way. It can be defined as

the quantitative indication of amount, dimension, capacity or size of the products and process and their

attributes. It is established. When a number of errors are detected in a single review.

Measurement: The method of determining a measure a known as measurement. It is the process of

assigning number or symbols are assigned to different attributes. It is established when different

components are reviewed and each unit is tested to collect the measure of a number of errors in all these

components. Clearly defined rules are followed.

Metrics: A metric is used to compare two or more measures. It is a quantitative measure of the

particular characteristic of a program‘s efficiency. It also assesses the level of complexity, strength of the

module and estimates time and cost of the project.

Indicator: This term is used to denote a representation of metric or a number of series of metrics

that provides information about the software development project in process. The indicators enable the

project manager to adjust the process, the project or the product for better results. It draws a person‘s

attention to a particular problem, tracks potential risks and evaluates the project team‘s ability to control

the quality of the products.

3.11 TYPES OF SOFTWARE MEASUREMENT

Some sort of measures are required to assess the quality of the final product in a software design and

to better understand the models produced. The main aim is to improve the software process on a regular

basis. This helps in estimation, quality control project control throughout the life cycle of a software

Indirect Measurement Direct Measurement

Types of Software Measurement

Project Decision making and further planning becomes easy and fruitful. There are two types of

measurements:

1. Direct Measurement

2. Indirect Measurement

Fig. 3.4: Types of Software Measurement

3. Direct Measurement:When the attribute of an entity is measured directly without taking

consideration of other attributes, we name it as direct measurement. Direct measures include cost and

effort applied and products like lines of code, execution speed, memory size and other defects that have

been found.

4. Indirect Measurement:There are some attributes like functionality, quality, complexity,

reliability, maintainability efficiency can‘t be measured directly. They are calculated on the basis of the

study of other attributes.

The measurements once taken help the project manager and the entire software team to take right

decisions that will lead to successful completion of the project.

3.12 CRITERIA OF MEASUREMENT

The measurement program is considered successful if it follows the following key characteristics.

diagram

1. Objective and Repeatable: The measurement program should be very easy to calculate and

understand the same measurement tool should be possible to repeat again and again on similar set of data,

without any problem.

2. Timely: The measurement program must be should be made available at the correct time to put

on influence on the quality development and maintenance of the software project.

3. Iterative:The measurement process should be iterative which means that the project manager

and team members should continually focus measurement efforts on the most critical areas. It should

continually work unstopped during the project life cycle to provide necessary information and knowledge

to the project managers.

4. Related to information needs: The whole process which includes collection, analysis and

reporting of data must be related directly to the information needs of the decision taking persons. The

information needs should be filled on a priority basis and addressed accordingly.

5. Interpretation: Measurement should enable the project manager and team members to gain

insight into the design and development of the work products.

6. FeedBack: There must be some follow up and measurement communicator‘s recommendations

derived from product metrics to the software team. This develops appropriate metrics for software under

consideration.

3.13 PROCESS OF MEASUREMENT

A software measurement process is a management tool which if conducted effectively helps the

project manager and the entire software team to take steps that lead to successful accomplishment of the

project. This process is all about defining what information is needed by the decision makers. Five sets of

activities are done:

1. Formulation: To measure and develop appropriate metrics.

2. Collection: To collect data to derive the formulated metrics.

3. Analysis: This calculates and analysis metrics and the mathematical tools are used.

4. Interpretation: To attain insight into the quality of the product.

5. Feedback: The suggestions / recommendations are forwarded to the software team.

The important stages in this process are:

(i) Plan Measurement: In this stage, information needs are identified and the most appropriate
measure is chosen to address those needs. Only important measurements are collected which are relevant

to the information needs; unnecessary ones are ignored. This stage also determines the resources and the

technologies required to implement a software measurement program. An organization is interested in

assigning defects, errors, cost and schedules linked to the development process.

(ii) Perform Measurement: In this step procedure for defined measure is documented to collect

each measure. in other words we can say that this stage revolves around the collection and processing of

measurement data. The procedures should be clear and repeatable. A mechanism is needed to verify the

correctness and effectiveness of measurement.

(iii) Evaluate Measurement: This stage is concerned with the study analysis and evaluation of the

main events of the process to ensure that the measurement approach and alerts about extra cost and warns

about schedule over runs.

(iv) Provide feed Back: Preparation of Reports, Review exercises and project meetings etc.

Provide valuable feedback to implement efficient measurement program. This activity ensures that

measurement is amply supported at the project level and organization level.

The decision makes and concerned team members operate within these stages and in the end use the

measurement information to develop the software as per requirement specifications.

3.14 BASIC CONCEPTS OF SOFTWARE METRICS

Metrics is defined as the quantitative measures that allow software engineers to identify the

effectiveness and improve the quality of software process, project and product IEEE defines as metric as

―a quantitative measure of the degree to which a system, component or process possesses a given

attribute‖ soft metrics serves the main purpose of identifying and controlling essential parameters that has

an effect on the software development. It is also helpful in fulfilling the following objectives:

(i) Quantitative measurement of the size of the software.

(ii) Assessment of the level of complexity.

(iii) Assessment of the strength of the module.

(iv) Assessment of the testing techniques.

(v) It specifies when to stop testing and determines the date of release of the software.

(vi) It estimates cost of resources and project schedule.

Software metrics are needed to quantity the development process and maintenance of software. We

get information about the status of an attribute and helps evaluate if an objective way. It becomes easy to

make modification plans. To achieve the desired goal, software metrics are used in different projects for a

long period of time to obtain indicators software metrics help in project planning and project.

Management activity and thus project younger and project team members become capable of taking right

path to complete the project.

3.15 IMPORTANCE OF SOFTWARE METRICS

Software Metrics has achieved a very crucial role in finding answers to questions within the

discipline of software engineering software metrics is necessary to decide the following things :

(i) Total time required to complete the project.
(ii) Total cost required to complete the project.

(iii) Number of persons and other resources required.

(iv) Approximate maintenance cost required.

(v) What is needed to test better quality and find the ways for better quality.

(vi) Number of errors to be discovered before delivering the product.

(vii) Estimation of effort to make modifications.

Software metrics help in minimising the software problems and thereby making if possible to

efficiently measure and evaluate the attributes of the software. Thus we see that software metrics are

helpful in giving the right information about the software development process and in this way help in

determining the areas of improvement and build a successful system.

3.16 CATEGORIES/TYPES OF SOFTWARE METRICS

An effective software metrics helps a software engineer to develop software as per user requirements

within estimated schedule and cost estimate etc. For this different type of metrics for measurement are

there. They have been categorized on follows:

3.16.1 Projects Based Metrics

Project Based Metric

1. Product Metric

2. Process Metric

3. Resource Metric

Design Based Metric

1. Traditional Metric

• CC

• Lines of Code

2. Object Oriented Metric

• CK

• MooD

Fig. 3.5: Software Metric

Project metrics illustrate the project characteristics and their execution. Project metrics help the

project manager in assessing the current projects. He can identify potential risks and problem areas. After

that he adjusts work flow and evaluates the project team‘s ability to control the quality of work products

Projects metrics are used for tactical purposes and not for strategic purposes.

Project metrics help to decrease the potential risks and problems. By making necessary adjustments;

project metrics help to minimize the development schedule. This avoids delay, the other purpose of

project metrics is to assess the product quality and to modify the technical issues as and when required.

By reducing the number of errors and defects, the quality of the project improves and this leads to

decrease in the overall cost of a software project.

In project metrics; often the first application takes place in estimation process. The study and the

metrics of the previous projects help in estimating time and effort for the current project. As the project

moves ahead, original estimates of time and effort are compared with the new measures of effort and

time. This helps the project manager to supervise and control the project.

Project metrics are used to track the errors detected during each development phase. For example of

software progresses from design to coding, project metrics are used to assess quality of the design and

obtain indicators which will affect the approach chosen for coding and testing. Project metrics are used to

measure rate of production in terms of models developed, function points and delivered source lines of

code.

3.16.1.1 Product Metrics

At the end of each phase, a working product is developed in the software development process. Each

product can be measured at any stage to check whether it is according to the required specifications or

not. Metrics are developed for these products. If a product does not meet user requirements; then

necessary steps are taken. Product metrics help the software engineer to detect and correct potential errors

before they may result into bigger problems. Product metrics assess the internal attributes of the products

so that the efficacy of the following may be judged:

(i) Analysis, design and code model.

(ii) Potency of test cases.

Software Metric

(iii) Overall quality of the software under development.

The following different types of metrics have been devised for products in the development process:

(i) Metrics for Analysis Model: These metrics study and find answers to various aspects of the

analysis model like system functionality, system size etc.

(ii) Metrics for Design Model: Software engineers take the help of the metrics to assess quality of

design that includes architectural metrics, component level design metrics and so on.

(iii) Metrics for source code: These metrics are used to assess source code complexity,

maintainability and other characteristics.

(iv) Metrics for testing: These help in designing efficient and effective test cases and if also

evaluates the effectiveness of testing.

(v) Metrics for maintenance: To assess the stability of the software product.

3.16.1.2 Process Metrics

Process metrics assess the effectiveness and quality of the software process. It also determines the

maturity of the process and the amount of effort required to develop the project. Software engineers

measure specified attributes to improve the quality of the project. In order to improve any process, a set of

meaningful metrics are developed to measure its specified characteristics. These metrics are used to

obtain indica for to devise a plan for process improvement. With the help of process metrics if becomes

easier for a software engineer to assess the efficacy of the software process. Three face namely product,

people and technology have a great influence on software quality and organization performance as is from

the given diagram:

Product

Process

People Technology

Fig. 3.6: Effect of Factors On Software quality & Organization

The skill and motivation of people, the complexity of the product and the technology level have a

great influence on the quality and team performance. For measuring the desired qualities in a software

process, a set of metrics is formulated based on different outcomes derived from the process. These

outcomes include the following:

(i) Number of errors detected before the release of the software.

(ii) Defects found by the user and reported after the delivery.

(iii) Tune spent in the fixation of errors.

(iv) Work products delivered.

(v) Human efforts used

(vi) Time expended

(vii) Conformity to schedule

(viii) Wait time

(ix) Number of modifications

(x) Estimated cost compared

Types of process metrics: The process metrics are of two types —

(i) Private Metrics,

(ii) Public Metrics.

Private Metrics : This type of metrics are private to the individual and serve as an indicator only for

the specified individual(s) e.g. defect rates by a software module and defect errors by an private

individual.

Public Metrics: If includes that information which is private to both individuals and teams. E.g.

project level defect rates, effort and related data collected analyzed and assessed to get indicators that help

in organizational process performance.

Process Metrics Etiquette: Process metrics can be beneficial because the organization works to

improve its process maturity. These metrics if mis-used can create problems for the organization. The

following are the guidelines to be used by managers and software engineers to avoid misuse of the

metrics.

Guidelines

(i) Rational thinking and sensitivity toward organization should be the first priority.

(ii) Feed back to the individuals or teams is very necessary to be provided.

(iii) Metrics should neither appraise nor threaten individuals.

(iv) Use of single metrics should be avoided.

As the process goes on, the derivation of simple indicators lead to a stringent approach called

statistical software process improvement (SSPI). SSPI uses software failure analysis to know about all

errors and defects faced during the development.

3.16.1.3 Resource Metric

Resource metrics is a source code metric and quality analysis tool unlike any other on the market. It

provides a standard method for analyzing C, ANSI C++, C# and Java source code across operating

systems.

The unique ability of Resource Metric to support virtually any operating system provides enterprise

with the ability to standardize. The measurement of source code quality and metrics throughout

organization. Resource standard metrics provides the fastest, most flexible and easy to use tool to exist in

the measurement of code quality and metrics.

Example Resource Metrics

* Effort expended

— On tasks with a project, classified by life cycle phase software function.

— On extra project activities.

— Training

* Elapsed Time

* Computer Resources

3.16.2 Design Based Metrics

The goal of having metrics for the software design is to assess the quality of the design which finally

assesses the quality of the product. The quality of the intermediate product is of interest in the

development process because it is believed that this leads to a high quality product. The software design

complexities are too many and knowledge collected from various fields can be useful in designing

systems. It is important to develop software metrics from which meaningful indicators can be derived.

With the help of these indicators necessary steps are taken to design the software keeping in view user

requirements. Various design metrics such as architectural design metrics, metrics for object oriented

design (MOOD), Component Level Design Metrics and user interface design metrics are used to indicate

the complexity, quality and so on.

Design metrics can be extracted much earlier in a project and if helps to predict greater number of

activities. Large number of Recent Software Design Metrics can be divided into three categories—(i)

Network Metrics, (ii) Stability Metrics, (iii) Information flow Metrics. Software metrics measures the

product under development and after a system are fielded. Design Metrics includes three activities:

(i) Total Number of Modules: This metric specifies the total number of modules. The

fundamental benefit of this metric is that by using an average size of a module, a size estimate of the final

product can be ascertained. If there is difference in the initial size estimate, it will require a change in plan

especially allocation of personal, the schedule and the cost of the product etc. and it will have to be

negotiated with the client.

(ii) Number of modules called: This metric is computed easily after the completion of the

software design. For each module, we can calculate how many other modules if calls and this can also be

used to determine how many modules call a particular module. A module with high fan in may point that

module has functional cohesion of module with high fan out means that the module depends on to many

modules where as a high fan in means that a number of other modules depend on this. During software

design, the designer must evaluate those modules that are called by a large number of module, or that call

a large number of modules.

(iii) Number of Parameters: The software a design specifies all those modules that will be present

in the system. It also specifies then inter-connections with other modules. When the software design

reaches its completion; a number of parameters of a module can be obtained. Some questions arise about

the constitution of a parameter. Whether a complex object in a parameter list be counted as a single

parameter? or it should be considered to be made up of many parameters ?

The simplest way is that to consider each logical entity in the parameter list as a parameter. The

second way is to think about each basic data which is used in a module as a parameter.

This metric in a way tries to find ―Coupling between Modules‖. When the module performs so many

functions and the parameter list is very large; then a high number of parameters can have low cohesion.

Modules with higher number of parameters will be more tightly coupled with their caller modules than

those with a small number of parameters.

This means that more effort and time will be needed to understand such modules. Any modification

in them will affect other modules as well so the job of the maintainer becomes a bit difficult. It is clear

that module with large number of parameters needs careful scrutiny.

3.16.2.1 Traditional Metrics

Traditional metrics are applied to the methods that carry out the operations of a class in an object

oriented system. The method is a component of an object that operates on data after receiving the message

and is defined as part of the declaration of a class. This method demonstrates how a problem is broken

into segments and the capabilities other classes expect of a given class. The following three metrics given

below are traditional metrics — (i) Cyclomatic Complexity, (ii) Size Metric, (iii) Comment Percentage
The traditional metrics have been widely used. Researchers and practitioners well understand them.

The traditional metrics are related to software quality attributes which have been validated.

Metric–1: Cyclomatic Complexity: It is used to evaluate the complexity of an algorithm in a

method. A method will low Cyclomatic complexity is considered better. Due to in heritance, cc cannot be

used to measure the complexity of a class. Cyclomatic complexity of individual methods can be combined

with other measures for the evaluation of complexity of the class. Although this metric is used to evaluate

quality attribute complexity; it is also related to all of the other attributes. The formula for testing is equal

to the number of edges minus the number of nodes plus 2. Number of independent test paths = Edges –

nodes + 2. Number of independent test paths = Edges – nodes + 2

Metric–2: Size Metric:Size of a class is used to evaluate the case of understanding of code by

developers and maintainers. Methods to measure size can be counting all physical lines of code, the

number of statements and the number of blank lines. Coding language and the complexity of the method

form the basis for evaluating the size measures. Size affects the ease of understanding, routines of large

size will always pose a higher risk in the attributes of understanding, Reusability and Maintainability. The

size metric include — Total lines of code, Total function calls, Number of windows.

Metric—3: Comment Percentage: The line counts which compute the size metric can be expanded

further to take into account a count of the number of comments both on line i.e. with code and stand

alone. The comment percentage is equal to the total number of comments divided by total lines of code

less the number of blank lines. This metrics is used by Developers and Maintainers to evaluate the

attributes of Understandability, Reusability and Maintainability.

3.16.2.1.1 McCabeCyclomatic Complexity (CC)

⚫ It is a software metric developed by Thomas J. McCabe in 1976. It is a very useful, logical

metric. It tests the complexity of the program. It also estimates the amount of effort required to

understand the code. It is created by calculating the number of different code paths in the flow of the

program. A program that has complex control flow will require more tests to achieve good code coverage

and will be less maintainable.

⚫ It measures the number of linearly independent paths through a source code. Cyclomatic

complexity is calculated using the control flow graph of the program. The nodes of the graph correspond

to indivisible groups of commands where as a directed edge links two nodes, if the second command

immediately follows the first command.

⚫ Cyclomatic complexity may also be applicable to individual functions. CC is an indication of

the number of ‗Linear‘ segments in a method. A method with no branches has a cyclomatic complexity of

since there is 1 arc. This number is incremented whenever a branch is encountered. CC is procedural

rather than an OO metric.

⚫ Cyclomatic complexity helps in estimation of complexity of code, testing effort and program

reliability.

⚫ The statements which represent branching as: ‗For‘, ‗while‘, ‗do‘, ‗if‘, ‗case‘, ‗catch‘

optional and ternary operator (optional). If the source code contained no decision points like ‗IF‘

statements or ‗FOR‘ loops, the complexity will come out to 1 because there is only one path. But if the

code had a single IF statement, there would be two paths through the code:

(i) First path where the IF statement is evaluated as TRUE.

(ii) Second path where the IF statement is evaluated as FALSE.

⚫ The formula of the cyclomatic complexity is defines as:

CC=E-N+P

CC= Cyclomatic Complexity

E= Number of Edges

N= Number of Nodes

P= Number of Connected Components

Example 1:

If number of edges= 7, number of nodes= 6 and number of connected components= 2.

Then cyclomatic complexity of figure 5.4 is:

CC= 7-6+2 => CC=3

N E

Fig. 3.7: Example of Cyclomatic Complexity

Example 2:

If number of edges= 10, number of nodes= 8 and number of connected components= 1

Then cyclomatic complexity of figure 5.5 is:

CC= 10-8+1 => CC=3

P

Fig. 3.8: Diagrammatic representation Structured Program

⚫ It is clear CC is calculated by creating a connected graph of the source code. Each line of code

is considered as a Node and the arrows between the nodes show the Execution Path. After cyclomatic

complexity of a code has been calculated, then we can compare its complexity of other programs as per

the standard range tabulated as under:

Cyclomatic Complexity Code Complexity

(a) 1-10 It is a simple program with less risk

(b) 11-20 More complex program with moderate risk

(c) 21-50 Complex with high risk

(d) CC > 50 Untestable having very high risk

⚫ Second method to determine the metric is to count the number of decision points (conditionals)

and adding

CC = D + 1 Where D is the number of decision points in the source code.

1

2

3 4

5

6

Advantage of McCabe Cyclomatic complexity

(i) It can be used as a case of maintenance metric.

(ii) When it is used as a Quality Metric, gives relative complexity of various designs.

(iii) It can be computed early in life cycle of halstead‘s metrics.

(iv) If measures he minimum effort and best areas of concentration for testing.

(v) If guides the testing process by limiting the program logic during development.

(vi) It is easy to apply.

Disadvantages

(i) It does not measure the Data Complexity. It measures only the program‘s control complexity.

(ii) The same weight is placed on nested and non-nested loops. However, deeply nested conditional

structures are harder to understand than non-nested structures.

(iii) CC may give a misleading figure in the case of simple comparisons and decision structures.

3.16.2.1.2 Source Lines of Code

SLOC is the most common metric or size today and is most widely used for size estimation. Line of

code is easy to compute and enjoys some reputation. If highly depends on programming language because

code writing varies from one programming language to another. Simple line metrics like errors per LOC,

defects per LOC, cost per LOC etc. can be derived from LOC. Lines of code has also been used to pre-

guess program complexity, development effort, and programmer performance.

LOC is the earliest and simplest metric for estimating the effort and size of a computer program even

then there is no standard definition of LOC. It is due to this reason, different workers may obtain different

counts rural emphasis is given to each line of code. LOC is often used during the testing as well as

maintenance phases.

Advantages

It is very simple to measure.

Disadvantages

(i) It is dependent on programming language.

(ii) It does not accommodate non-procedural language.

(iii) Poor software design may lead to excessive and unnecessary line of code.

Guidelines for determining LOC

(i) One LOC is for one logical line of code.
(ii) Only those line of code are included which are delivered as part of software.

(iii) Test drivers, test stubs and other support software are excluded.

(iv) The software code written by the software developer is included whereas code created by the

application generator is excluded.
(v) All declarations in the programs are counted as lines of code.

(vi) No comment is counted as lines of code.

3.16.2.2 Object Oriented Metrics

Source line of code and Functional Point Metrics can be helpful in estimating object oriented

software projects. But these metrics do not succeed in providing details for effort and schedule estimation

in incremental software development. Different types of metrics have been suggested for object oriented

projects which have been given below:

(i) Number of Scenario Scripts: These are a series of steps which depict the interaction between

user and application. There is direct relationship between number of scenarios and the application size

and number of test cases. Which are developed to test the software. The scenario scripts are analogous to

use cases.

(ii) Number of key classes: Key classes are independent components. The key classes give

indications about effort required to develop software and the amount of ‗reuse‘ feature to be used during

the development process.

(iii) Number of support classes: Support classes can be defined as those classes which are needed

to implement the system but are related indirectly to the problem domain. E.g. user interface classes,

computation class. For each key class, a support class can be developed. Support classes and key classes

function in a similar way.

(iv) Average number of support classes per key class: Key classes are defined very early in the

software project whereas support classes are defined throughout the project. If average number of support

classes per key class is pre-determined; then estimation process gets simplified.

(v) Number of sub systems: Sub system can be defined as a collection of classes that is supporting

a function visible to the user. After the sub systems are identified if becomes easy to prepare on

appropriate schedule, according to which work on sub systems is divided among project members.

Above mentioned projects along with other metrics like effort used, errors and defects detected are

collectively used.

3.16.2.2.1 CK (Chidamber&Kemerer’s Metrics Suite)

CK metrics for 00 Design is the deepest research / study in object oriented investigation. The

following six metrics have been defined for it.

Metric 1 :Weighted Methods per class (WMC) : Let us suppose a class C1

Where M1 Mn are the methods.

and C1. Cn be the complexity of the methods

Then the formula for WMC =

n

Ci
i=1

The following points are to be noted:

* The number and complexity of the method, give an indication of Time and Effort required

developing and maintaining the class.

* The number of methods in a class is proportional to the potential impact on children. Larger the

number of methods, greater is the potential impact.

* Classes having larger number of methods are likely to be more application specific thereby

limiting the possibility of reuse.

Metric 2 : Depth of Inheritance (DIT) : In those cases where multiple inheritance is involved; DIT

is the maximum length from the node to the root of the tree :

* If a class is deeper in the hierarchy, if inherits greater number of methods and makes it more

complex to predict its behavior.
* Deeper trees constitute greater design complexity.

* The deeper a particular class in its hierarchy; the more is potential reuse of inherited methods.

Metric 3 : Number of Children (NOC) : It is defined as the number of immediate sub classes

which are under a class in the class hierarchy and are going to inherit the methods of the parent class :

* If NOC is greater; the Reuse will also be greater because inheritance is a form of Reuse.

* If NOC is greater; there are greater chances of improper abstraction of the parent class.

* NOC is linked to potential influence of a class on the design. Greater NOC in a class may

require.

Metric 4 : Coupling between object classes (CBO) : Classes having same properties are said to be

:

* Excessive coupling between object classes has a bad effect on the Modular Design and prevents

Reuse.

* Inter object class couples should be minimum to improve Modularity and Promote

encapsulation. As the number of couples becomes large; the sensitivity to any change in other

parts of the design also becomes large so the maintenance becomes more difficult.

* The higher the inter object class coupling, the more rigorous the testing needs to be.

Metric 5 : Response for a class (RFC) :

* It indicates number of methods that can be invoked in response to a message.

* RFC measures potential communication between classes.

* When RFC Grows; the complexity of a class becomes more and more whereas

understandability decreases.

* In case of a large number of methods invoked in response to a message; the testing and

debugging of the class becomes more complicated and if becomes more difficult for a tester to

understand.

Metric 6 : Lack of cohesion in methods (LCOM) : LCOM can be defined as the count of the

number of methods pains whose similarity is 0 minus the count of methods pairs whose similarity is not

zero. As the number of similar methods in a class becomes more and more; the cohesiveness increases:

* Cohesiveness promotes encapsulation.

* Lack of cohesion years that classes should be split into two or more than two sub classes.

* Low cohesion increases complexity and it increases the chances of errors during the

development process.

* If there is any measure of disparateness of methods; it helps to identify flaws in the design of

classes.

3.16.2.2.2 Mood (Metrics for Object Oriented Design)

The metrics for Object Orient Design refers to the basic structural mechanism of the 00 paradigm as

encapsulation (MHF, DHF) inheritance (MIF and AIF), poly morphism (PF), message passing (CF) and

are expressed as Quotients. It include the following metrics:

1. Method Hiding Factor (MHF) :It is defined as the ratio of sum of the invisibilities of all

methods defined in all classes to the total number of methods defined in the system under consideration.

The invisibility of a method is the %age of the total classes from which this method is not visible.

2. Attribute Hiding Factor (AHF) :It is the ratio of sum of the invisibilities of all attributes

defined in all classes to the total number of attributes defined in the system under consideration.

3. Method inheritance factor (MIF) :MIF is defined as the ratio of the sum of the inherited

methods in all classes to the total number of available methods (locally defined plus inherited) for all

classes of the system under consideration.

4. Attribute inheritance factor (AIF) :It is defined as the Ratio of the sum of inherited attributes

to the total number of available attributes (locally defined + inherited) for all classes of the system under

consideration.

5. Polymorphism Factor (PF) : It is the ratio of the actual number of possible different

polymorphic situation for all classes ci & the maximum number of possible distinct polymorphic

situations for class ci.

6. Coupling Factor (CF) :It is defined as the ratio of the maximum possible number of couplings

in the system to the actual number of couplings not computable to inheritance.

3.17 SOFTWARE METRIC APPROACH

Software Metrics are numerical data linked to the development of the software. They have the

following four function to play:

(i) Planning: Software metrics lays the foundation for cost estimation, resource planning,

scheduling, and budgeting.

(ii) Organizing: A projects organization is influenced by size and schedule metrics.

(iii) Controlling: They provide an important tool to supervise, monitor and control the progress of

various development activities.

(iv) Improving: Software metrics are used to ensure a quality product in the end. This is achieved

by continuous process improvement.

The following steps are required to select, design and implement software metrics so that a light

software metric program is developed:

(i) Identify Metrics Customer: This is the first step. Those people are identified who will be

using metrics for decision making and implement actions. These customers can be

programmers, Testers, Experts and users.

(ii) Select Measurable Goals: The second step is to select goals at the organization level and the

project level. At the organization level these may below cost provider, higher level of customer

satisfaction and profit margins etc. At the project level the goals can be to deliver the software

product in time, completion of project within budget and to achieve the desired level of quality.

(iii) Ask Questions: Some questions are raised and answers to satisfy these questions are found

which will ensure the achievement of the goals. The questions can be:

(a) Whether the software product adequately tested or not?

(b) He all the errors properly corrected?

(iv) Select Metrics: The further step is the selection of the metrics suitable to provide information

to the people that helps them to take right decisions to ensure the achievement of goals after

solving problems.

(v) Select a Measurement Function: A measurement function is very necessary. This defines the

way how to calculate the metric. Some metrics are measured directly by variables.

(vi) Collect Data :After taking the decisions about what to measure and how to measure, the data is

collected accordingly to compute the metrics.

(vii) Provide feedBack :After the computation of the metrics, the need arises to provide feedback

by evaluating the metrics. The patterns indicators and goals identified by the metrics are used to

determine the need for action a further investigation or to describe the level of confidence in a

given result. Software metric approach is better depicted in the following diagram:

Metrics

Fig. 3.9: Steps for developing Software Metric program

3.18 GUIDELINES FOR METRICS

An ideal software metrics is easy to understand, effective and efficient. An ideal software metrics is

always validated and characterized effectively. The following guidelines should be followed to develop

metrics:

(i) Simple and computable:The derivation of software metrics should be very easy to understand

and if should take average among of time and effort.

(ii) Consistent and objective: Very clean results should be produced by software metric.

Easily Available

Consistency Validity

Objectivity Robust

Computability Usability

Simplicity

(iii) Consistency of use of units and dimensions: Mathematical calculations in metrics should

carry the use of dimensions and units in a consistent manner.
(iv) Programming language should be independent and the metrics should be developed on the basis

of Analysis Model, design model or program‘s structure.

(v) High Quality Product : If should lead to the production of high quality software product.

(vi) Easy to Calibrate : Metrics should be easy to adjust according to the requirements of the

product.
(vii) Easy to obtain: Metric should be easy to be developed at a reasonable cost.

(viii) Robust : Metrics should be relatively insensitive of small change in process project or product.

(ix) Value : The value of metrics should be proportional to the value of software characteristic they

represent. If one increases or decreases, the other should also increase or decrease relatively.
(x) Validation : Metrics should be validated before it is being used for making decisions.

(xi) Focus : The main focus of the metrics should be on the product and process.

(xii) Never to use a single metric: Software is complex and multifaceted. One should not obsess to

much on a single metric. Other metrics should not be avoided.

(xiii) Metrics data should not be ignored or considered negative.

(xiv)Metrics should not be used to threaten the individual or teams.

These people might manipulate the data, the next time. Metrics should never be used as a ‗stick‘.

These guidelines when followed in true sense result into a very high quality metrics.

3.19 QUALITIES OF GOOD SOFTWARE METRICS

A Good software metrics should possess the following characteristics:

(i) Simplicity: A good software metrics is very to understand. It should not be complicated.

(ii) Computability: It should be easy to compute and derive the metrics. It should not require a lot

of time and effort for computation.

(iii) Objectivity: It should be of objective and should not be affected by subjective judgments. If

should provide clear cut results.

(iv) Consistency: The software metrics should show consistency so that even an independent third

party should be able to derive the same metric value and using the same type of information.

Fig. 3.10 Quality of Good Software Metrics

(v) Easily Available: It should not be too much expensive. It should be available at a reasonable

cost.

(vi) Validity : The metric should measure what is required if the metric should provide valid result.

(vii) Robust :If there are minor changes in the product; the metrics should be able to withstand. The

changes which can be accidental or intentional security breaches.

(viii) Usability : Software metric tries to measure or predict some attribute of some product or

process. The software should be user friendly in order to avoid user‘s reluctance and failures.

3.20 SOFTWARE QUALITY

1. Each type of customer will have their own definition of quality. It means quality definition may

differ from person to person. For example: an organization defines quality in terms of profits, whereas

user defines quality as bug free, within budget and user friendly.

2. Quality can be defined as:

⚫ According to Oxford dictionary: Degree of excellence

⚫ According to Edward Deming: Fitness for purpose

⚫ According to ISO: The totality of characteristics of an entity that bear on its ability to satisfy

stated or implied needs.

3. Quality of software depends upon many factors like bug-free, portability, reusability, delivered

on time, within budget, user friendly, meet user‘s requirements and maintainability.

4. It is a relentless process means ongoing process.

5. The quality system activities encompass the following:

⚫ Audits of projects

⚫ Review of System

⚫ Development of standards and guideline.

6. Cost of quality depends upon the level of testing and maintenance.

Cost of quality = cost of conformance + cost of non-conformance

COQ = COC + CONC

7. Need of Software Quality

(a) If a software has a high quality, it means software has fewer defects. This saves time during

testing and maintenance phases.

(b) Higher the quality of software, lower the maintenance cost. It increases the reliability and

customer satisfaction.

3.21 ATTRIBUTES OF QUALITY SOFTWARE

The attributes are those factors which increases the quality of a software which are as follows:
1. Bug free

2. Portability

3. Reusability

4. Delivered on time

5. Within budget

6. Customer Satisfaction

7. Maintainability

8. User friendly

COQ

COC

Fig. 3.11 Attributes of Quality Software

1. Bug-free:A quality software is always bug free. A software is a quality software if there are

lesser number of bugs in the software product.

2. Portability: Portability is an attribute in which a software product can be adopted to run on

computers (machines) other than the one for which it was designed. According to this feature, a quality

software can run on different machines, different operating system environments and with other software

products.

3. Reusability: According to this feature, we can make some changes in the software product to

build a new version of the same product. In this process, minor changes are made in the old software

product to make a new software product. In this process, different modules of the product are, reused to

develop new product.

4. Delivered on Time:A quality software is always delivered on time. It means software is

delivered in a fixed time period and within budget.

5. Within Budget:A software is called a quality software, if it is under budget of a client. If a

client/customer cannot afford a software because of its high cost, then that software is not a quality

software for that particular client/customer. A quality software should be within budget of a customer.

6. User Friendly: A software product is user friendly if its users find it easy to use. A quality

software is always user friendly. A software with many features is never called a quality software if a user

faces problems to use it. In a quality software product, users can easily invoke the functions and features

of software product.

7. Customer Satisfaction: It is another important attribute of software quality product. A

software is known as quality software for a particular user if it meets the user‘s requirements. Software

should satisfy the needs/requirements of the customer/user.

8. Maintainability:A quality software is maintainable if errors can be easily corrected when they

show up, functions of the software product can be easily added to the same software product. This

attribute provides the suitability for debugging, extension of functionality and ease of modification.

3.22 SOFTWARE QUALITY MANAGEMENT SYSTEM

1. Software quality management system is also known as quality system. Software quality

management system ensures that organizations use a adequate methodology to develop a desired quality

software.

2. Software quality management system is the responsibility of whole organization. Software

quality is not a responsibility of individual person. The top management of the organization should

activity participate in this system. If top management of the organization will actively participate in the

system, then every member of the organization will take the quality task seriously.

Reusability

Bug free Portability

Attributes of
Quality

Software

Maintainability Delivered

on time

Customer
Satisfaction

Within budget

User friendly

Inspection

Quality Control

Quality Assurance

Quality Management

3. Software quality management system involves many activities like auditing and reviewing of

the quality system, development of standards, procedures and guidelines etc to enhance the quality of

software product.

4. In the software quailty management system, finished products are inspected to eliminate the

defective products.

5. This process has mainly four stages which is known as quality assurance method.

Fig. 3.12 Quality Assurance Method

In the first stage, the product is examined from each angle. In the second stage, quality control finds

the defects and eliminate the defects. Quality control also determine the reasons behinds the defects and

corrects the reasons of defects. In the third stage, quality assurance takes place. The planned systematic

activities necessary to ensure that a component, module or system confirms to established technical

requirements. The modern quality paradigm includes certain guidance for recognizing, defining,

analyzing and improving the product process. In the last fourth stage, quality management aims at

continuous process improvement.

3.22. 1 Software Quality Management Principles

The principles of software quality management system are as follows:

Principle 1:Organizations should clearly understand the needs of current and future customers. The

aims of the organizations should meet the customer requirements.

Principle 2:Top management of organization should create such an environment in which all people

can become fully involved in achieving the organizations common goal.

Principle 3:All people of organization should activily involve in achieving the organization‘s goals

and benefits.

Principle 4:All resources and activities of an organization are managed efficiently to achieve

common goal.
Principle 5:Organizations should take effective decisions and actions to achieve desired goals.

Principle 6:Achieving quality is a relentless process means ongoing process.

3.23 SOFTWARE QUALITY ASSURANCE (SQA)

1. Software quality assurance (SQA) is a planned and systematic approach to the evaluation of the

quality.

2. SQA ensures that the standards, processes and procedures are established and followed

throughout the software development life cycle.

3. In the software quality assurance, processes and methods are monitored throughout the

software development life cycle.

4. The goal of quality assurance is to prevent introducing defects in the software application

which helps to improve the development process. Its aim is prevention of defects to improve

the quality.

5. Software quality assurance is pro-active process. It identifies the weaknesses in the process but

it does not involve in the execution of program.

6. All people who are involved in the software development process are responsible for quality

assurance.

7. Verification is an example of quality assurance.

3.23.1 Importance of Software Quality Assurance (SQA)

Reduced Cost
of Maintenance

Improved Customer
Satisfaction

Importance of
SQA

Reduced Cost
of Development

Timely Completion
of Project

Improved product
quality

Software quality assurance (SQA) is an important process in the software development approach to

enhance the quality of software product. It is a proactive process used to prevent the defects and to

improve the quality of the software.

The following are some points which explains the importance of SQA:

Fig. 3.13 Importance of SQA

1. Improved Customer Satisfaction: SQA ensures that the developed software meets the

customer‘s requirements and fulfill their desired goals. SQA ensures that software product does what it is

supposed to do. Customer satisfaction is the most important factor, for which quality assurance is done.

2. Timely Completion of Project: In SQA process, all testing and development processes go

smoothly and quickly. SQA assures that the software product is free from errors/bugs/defects. It means

that software development project consistently reach towards completion within budget and time.

3. Improved Product Quality: The quality of software product gets improved by following

standards, procedures and actions. The aim of quality assurance is to prevent introducing defects in the

software product which improve the product quality.

4. Reduced Cost of Development: In this process, developers are working with SQA team. Both

developers and SQA team monitors the software development process from planning to implementation

stage to maintain quality. In this way, there are lesser chance of an error to come up in the software

development process. The developers don‘t need to go back to the application and fix something all the

time and cost of development is automatically reduced.

5. Reduced Cost of Maintenance: If a software product is properly quality assured it means

software is bug free. It will give less chances to users to complain and time spent on maintenance will be

much less.

3.23.2 Activities of Software Quality Assurance(SQA)

The Software Quality Assurance is the process of evaluating the quality of a product. It is an

umbrella activity that ensures conformance to standards and procedures throughout the SDLC of a

software product. For the enhancement of quality in the software product, the following activities are

performed:

1. Formulating a quality management plan

2. Applying software engineering techniques

3. Conducting formal technical reviews

4. Applying a multi-tiered testing strategy

5. Enforcing process adherence

6. Controlling change

7. Performing SQA audits

8. Keeping records and reporting

Fig. 3.14 Activities of SQA

1. Formulating a Quality Management Plan: The first task of SQA is the formulation of a

quality management plan.

⚫ Thequality management plan identifies the quality aspects of the software product tobe

developed.

⚫ Plan check points for work products and thedevelopment process.

⚫ Tracks changes made to the development processbased on the results of the checks.

2. Applying Software Engineering: The software engineering theories and practical techniques

help the software designer to achieve high quality specification.

⚫ Information gathering techniques help designer to collected information.

⚫ The project estimation techniques calculate the estimation of the project.

3. Conducting Formal Technical Reviews (FTR): The formal technical review (FTR) in

conducted to perform following activities:

⚫ To assess the quality and design of the prototype.

⚫ It is a meeting with the technical staff to discuss the quality requirements of a software product

and its design quality.
⚫ It helps in detecting errors at an early phase of development.

⚫ It prevents errors for moving down to the latter phases and resulting in rework.

4. Applying a Multi-tiered Testing Strategy: The software testing is a primary task of SQA

activity which is described as

⚫ Error detection and correction in project.

⚫ Different types of testing is performed in sequence, fest of all unit testing is performed and in

the subsequence levels, integration testing and system level testing are applied.

5. Enforcing Process Adherence: It emphasizes the need for process adherence during product

development. It is a combination of two tasks, product evaluation and process monitoring.

6. Product Evaluation: The product evaluation is conducted to ensure the following:

⚫ To ensure that the standards lay down for a project are followed or not.

⚫ To ensure that the compliance of the software product to the existing standards is verified.

⚫ To ensure that the software product reflects the requirements identified in the project

management plan
7. Process Monitoring: The process monitoring ensures and monitors the following activities:

⚫ Does the appropriate steps to follow the product development procedures are carried out.

⚫ Monitors processes by comparing the actual process with the written documented procedures.

⚫ It ensures that the development and control processes described in the project management plan

are correctly carried out.

⚫ It ensure that products and processes confirm to standards and procedures.

⚫ Audits ensure that product evaluation and process monitoring are performed.

Activities of SQA

Enforcing process
adherence

Applying a multi-tiered
testing strategy

Controlling change

Conducting formal
technical reviews

Performing SQA audits

Applying software
engineering techniques

Keeping records
and reporting

Formulating a quality
management plan

8. Controlling Change: It evolves both human and automated procedures to provide a

mechanism for change control. The change control mechanism is implemented during the development

and maintenance stages.

⚫ It ensures software quality by formalizing requests for change.
⚫ It evaluates the nature of change.

⚫ It controls the impact of change.

9. Performing SQA Audits: TheSQA audits scrutinize the software development process by

comparing it to established processes.

⚫ It ensures that proper control is maintained over the documents required during SDLC.

⚫ It ensure that the status of an activity performed by the developer is reflected in the status report

of the developer.

10. Keeping Records and Reporting: The keeping records and reporting involves the process of

collection and circulation of information relevant to SQA. The results of reviews, audits, change control,

testing, and other SQA activities are reported and preserved for future reference.

3.23.3 Software Quality Metrics

Software quality metrics are used to express the quality of software product. No single metric is

there which appropriately explains the quality of the software product. Software quality metrics are some

measurements which are related to system, process and documentation of software. Software quality

metrics are divided into three types which are as follows:

Defect

Metrics
Reliability

Metrics
Maintainability

Metrics
Cyclomatic
Complexity

Metrics

Fig. 3.15 Metrics of Software

1. Defect Metrics: Defect metrics provide the number of defects observed in a particular software

product. It is used to reflect the man-hours spend during testing to resolve the defects. Defect metrics also

explain the types of defects like computation defects, usability defects, requirement objects, design

defects etc. to prevent the future problems.

2. Reliability Metrics: Reliability metrics are used to know the probability of software failure or

the rate at which software will occur. Reliability metrics are discussed in chapter 11. 3.

Maintainability Metrics: Maintainability metrics are used to measure the maintainability of the

software product. The maintainability of a program is related to its complexity. The complexity is

measured by assuming no. & frequency of operators, no. & frequency of operands.

4. Cyclomatic Complexity Metric : It is a very useful and logical metric. It tests the complexity

of the program. It also estimates the amount of effort required to understand the code. It is created by

calculating the number of different code paths in the flow of the program. A program that has complex

control flow will require more tests to achieve good code coverage and will be less maintainable. It

measures the number of linearly independent paths through a source code. Cyclomatic complexity helps

in estimation of complexity of code, testing effort and program reliability.

3.23.4 Principles of SQA

The SQA team has to follow some principles which ensure that the application will live up to the

expectations of the users. Some commonly known important principles which are used for proper

execution of software quality assurance (SQA) are as follows:

1. Feedback: The time is always a best friend and biggest enemy of any developer. If SQA team

give feedback early to the developer, then developer can easily take action. In short, faster the feedback,

faster the development will move forward.

Software Quality Metrics

2. Motivation: Quality assurance is a very tedious task. SQA team members should be motivated,

passionate and have right mindset so that they can work efficiently, effectively and with creativity.

3. Evolution: This principle is for future use. SQA team should be able to mark every time

something new is done. Every time something new happens, it should be always noted.

Fig. 3.16 Principles of SQA

4. Persistence: The SQA team members should be very patient in every aspect of the software

development process. There is no perfect application and every port should be scrutinized without

hesitation.

5. Focus on Critical Factors: There are many factors developed in the software are not as critical

compared to others. SQA team members should be focus on more critical areas first.

6. Quality Control: Quality control is the pillar of quality assurance. Everything needs to have

quality control from start to the finish. The biggest and tightest quality control should be executed as early

as possible which emphasis on where to start.

7. Multiple Objectives: This principle is a challenge and risk for SQA team members. At the start

of SQA planning, the SQA team members should have more than one objective and each objective should

be focused on.

8. Result Focused: The SQA process should always look for results whenever a phase is set.

SQA should be result focused because it effects to the clients and users.

3.23.5 Software Quality Assurance Standards

The following are some standards which assure the quality in a software product:

ISO–9000 SEI–CMM PSP Six Sigma

Fig. 3.17 Standards of SQA

I. ISO-9000

1. ISO is also known as International Standard Organization. It is a non-governmental

organization. It is a network of 63 countries which is established to formulate standardization. In 1987,

ISO published its 9000 series of standards. ISO 9000 interpret the ISO standards for software industry in

1991 because manufacturing industry and software industry have different standards. In India, ISO

certification is offered by BIS (Bureau of Indian Standards) and IRQS (Indian Register Quality System).

SQA Standards

Motivation

Feedback Evaluation

Result Focused
Principles of

SQA

Persistence

Multiple
Objectives

Focus on
Critical Factor

Quality Control

Pre-assessment stage

Application stage

Compliance audit

Document review stage

2. ISO 9000 Certification: ISO 9000 certification is a contract between independent parties. It is

basically a set of guidelines. It is a series of three standards which are as follows:

⚫ ISO 9001: It is used in software development organizations. It is applicable to organizations

which are engaged in design, development and servicing of goods.

⚫ ISO 9002: It do not design products. It is involved in production only.

⚫ ISO 9003: This standard is applicable to those organizations which are involved in installation

and testing only.

3. Reasons to get ISO 9000 Certifications:

⚫ If an organization have ISO 9000 certification, confidence of customers in that organization

increases.

⚫ This certification provides basic framework for the development of the software product.

⚫ ISO 9000 certification points out the weak points of an organization and recommends some

actions to the organization so that they can improve those weak points.

⚫ This certification helps the organization to make development process more focused, effective,

efficient and cost-effective. It increases the quality of a particular software product.

4. Procedure to get ISO 9000 Certification

⚫ An organization who wants to get ISO 9000 certification, has to register itself to a registrar. It is

known as application stage.

Fig. 3.18 Procedure to get ISO 9000 Certification

⚫ After the registration, the registrar makes rough assessment of an organization. It is known as

pre-assessment stage.

⚫ In the third stage, the registrar reviews all the documents which are submitted by an

organization during application stage. It is known as document review stage. The registrar

suggests some possible improvements to the organization.

⚫ During the fourth stage, which is known as compliance audit, registrar checks whether the

organizations made those improvement or not which were suggested by him during document

review stage.

⚫ At the last stage, the registrar awards an organization with ISO 9000 certification after the

successful implementation of all improvements suggested by the registrar.

After providing the ISO 9000 certification to the organization, the registrar monitors the

organizations periodically to check whether the organizations maintain their quality or not. This process is

known as continued surveillance.

5. Issues related to ISO 9000 Certification

⚫ ISO 9000 certification does not provide any guidelines for an appropriate process and does not

guarantees the process to be of high quality.

⚫ There is no international accreditation agency exists which takes guarantee of ISO 9000

certification. Certification is awarded by non-governmental organization.

Awards with certificate

⚫ After getting the certification, many organizations fail to maintain the quality.

II. SEI-CMM

1. It is also known as software engineering institute capability maturity model. It was proposed by

SEI, USA in 1986.

2. It is a referenced model and used in two ways: capability evaluation and software process

assessment.

3. It is intended to help software organizations to improve the maturity of their software

processes. The focus is on identifying the key process areas.

4. SEI-CMM five maturity levels which are as follows:

⚫ Levels 1—Initial Level: It is characterized by adhoc activities. It is also called chaotic level

because different engineer follow their own process. No standard process is defined and followed during

the software development. When the engineers leave the project, then it becomes very difficult for new

engineer to understand the process.

⚫ Level 2—Repeatable: At this level, size and cost estimation techniques like COCOMO,

function point etc. are used to establish the tracking cost and schedule.

⚫ Level 3—Defined: ISO 9000 aims to achieve this level. In this level, review techniques are

emphasized to achieve phase containment of errors. Development and management activities are defined

and documented.

⚫ Level 4—Managed: At this level, process metrics and product metrics are collected and

measured. Basically focus is on software metrics. Pareto charts, diagrams etc. are used to measure process

and metric product metric.

⚫ Level 5—Optimizing: For continuous process improvement, process and product measurement

data are analyzed in detail. In this manner, organization finds out the best software engineering practices

and innovations.

III. PSP—Personal Software Process

1. PSP is suitable for individual use. It is a scaled down version of industrial software process.

2. It is a framework that helps engineers to measure and improve the way they work.

3. It does not tell engineers how to analyze, design, code and test the software product. It just

helps them to improve their work.

4. The methods of PSP are as follows:

(a) Time measurement: Use stopwatch to get an objective picture of the time spent.

(b) PSP planning: PSP planning helps individuals to plan their project.

Coding Standards PSP 0

Time and

Schedule Planning

PSP 1

Design and
Code Reviews

PSP 2

IV. Six Sigma

Personal
Process Evaluation

Levels of PSP

Fig. 3.19 Levels of PSP

PSP 3

1. The purpose of six sigma is to improve process to do things better, faster and at lower cost. It

was pioneered by Motorola in 1995.

2. Six sigma is a rigorous and disciplined methodology that uses data and statistical analysis.

Quality

Assurance Quality
Control

3. It improves the company‘s operational performance by identifying and eliminating defects from

products.

3. Six sigma can be defined and understand at three distinct levels—metric, methodology and

philosophy. It is applicable to every industry.

3.24 SOFTWARE QUALITY CONTROL (SQC)

1. Quality control is the pillar of quality assurance. Everything needs to have quality control from

start to the finish.

2. Quality control is used to verify the quality of the output.

3. The aim of the quality control is to detect the defects and corrects the defects.

4. Quality control is a Re-active technique. It is product oriented. The testing team members are

responsible for quality control.

5. Activities of quality control are : Reviews, Testing etc.

6. In short, quality control is a subset of quality assurance.

3.25 DIFFERENCE BETWEEN QUALITY ASSURANCE AND QUALITY CONTROL

Sr. No. Quality Assurance Quality Control

1 Quality assurance is the process of

managing quality.

Quality control is used to verify the quality.

2 Quality assurance is a pro-active technique.
It identifies weakness in the process

Quality control is a Re-active technique. It
identifies the defects and corrects the defects.

3 The aims of the quality assurance is to

prevent introducing defects in the software

application.

The aim of the quality control is to detect the

defects in the software application.

4 It is process oriented. It is product oriented.

5 It does not involve executing the program. It involves executing the program

6 Example—verification Example—validation or software testing.

7 It is done before quality control. It is done after quality assurance.

8 It is a staff function. It is a line function

9 All people who are involved in the software

development process are responsible for

quality assurance.

Testing team members are responsible for

quality control.

10 It is a set of activities for ensuring quality in

software engineering processes.

It is a set of activities for ensuring quality in

software products.

11 Activities are—Audits, Training, Process
definition and Implementation.

Activities are—Reviews, Testing

12 It is a subset of software test life cycle
(STLC).

It is a subset of quality assurance (QA).

COURSE: SOFTWARE ENGINEERING

UNIT 4: SOFTWARE REQUIREMENT ANALYSIS

4.1 INTRODUCTION

4.2 SYSTEM ANALYSIS

4.2.1 ROLE OF SYSTEM ANALYST IN SOFTWARE DEVELOPMENT PROCESS

4.3 REQUIREMENT GATHERING AND ANALYSIS

4.4 SOFTWARE REQUIREMENT SPECIFICATION (SRS)

4.4.1 NEED OF SRS DOCUMENT

4.4.2 ATTRIBUTES/CHARACTERISTICS OF SRS DOCUMENT

4.4.3 STRUCTURE/ORGANIZATION OF SRS

4.4.4 REASONS OF BAD SRS DOCUMENT

4.5 STRUCTURED ANALYSIS

4.5.1 OBJECTIVES OF STRUCTURED ANALYSIS

4.5.2 PRINCIPLES OF STRUCTURED ANALYSIS

4.6 TOOLS FOR STRUCTURED ANALYSIS

4.1 INTRODUCTION

The software development must be based on the requirements raised by the customer. The

requirements must reflect the user‘s view in both for designing and implementation. The

documentation of user requirements is done in a systematic in the form of a document SRS. It is

written in a natural language, and contains a description of what the system will do without

describing how it will do it. It is designed to describe user requirements, system requirements,

limitation, functions, economic and social issues. The following section describes requirement

analysis, need of SRS, format of SRS and detail about different tools.

4.2 SYSTEM ANALYSIS

1. System analysis is a planned and systematic investigation to determine the functions of

a particular system.

2. Its aim is to study the application area and its problems. For this purpose, study

involves many data gathering methods like interviews, consultations and observations etc.

3. A person called system analyst conducts this study and identifies various activities,

objectives and procedures to achieve his goal.

4.2.1 Role of System Analyst in Software Development Process

System analyst is an engineer who gathers and analyzes the customer requirements. System

analyst gathers data and analyzes the gathered data to understand the customer‘s requirements.

The role of system analyst is as follows:

1. System analyst defines problem in a precise and cleared manner.

2. System analyst uses many data gathering methods like interviews, consultations and

observations.

3. After the data collection, system analyst analyzes the collected data to get the correct

solution of a problem.

4. System analyst also studies the pros and cons of various proposed solutions and choose

the one best solution for a problem.

5. System analyst develops plans, design those plans with standards to achieve goals.

6. System analyst visit to customer and make SRS.

4.3 REQUIREMENT GATHERING AND ANALYSIS

1. Many projects are failed to satisfy customers. This is because developers started

developing the software without clear understanding of what the customers exactly wanted.

2. Whether a developer uses his/her complete knowledge to develop software, but it is

impossible to develop a satisfactory solution without a clear understanding of a problem. If a

developer fails to understand the customer‘s requirement, he/she is unable to develop

satisfactory software.

3. Today, in many organizations, developers start spending considerable time to

understand the exact requirements of the customer. This is known as requirement analysis and

specification phase.

4. The aim of the requirement analysis and specification phase is to fully understand the

customer requirements and to systematically document these specifications. SRS (software

requirement specification) document is the final outcome of the requirement analysis and

specification phase.

5. The main activities performed during the requirement analysis and specification phase

are:

(I) Requirement Gathering

(II) Requirement Analysis

(III) Requirement Specification

(IV) Requirement Validation

(I) Requirement Gathering: It is also known as requirement elicitation.

1. In the requirement gathering activity, system analyst collects the data. It sounds very

simple but it is very difficult process. It is very difficult to collect the relevant and

useful information from large number of people.

2. For this purpose, working model is used. This working model helps the system analyst

to collect the customer‘s requirements. But in the absence of working model, system

analyst uses his/her experience, imagination and creativity for collecting customer‘s

requirements.

3. System analyst uses various methods/ways to collect the customer‘s requirements

which are as follows:

(i) Interview: Interview is an effective data collection method. It is basically consist of

asking questions, listening to individuals and recording their responses. In this method, one is

interviewer and one is interviewee. Interviewer is one who takes interview and interviewee is

one who gives interview. It can be conducted individually or as a group.

The following are the types of interview:

— Informational Interview: The objective of this interview is to ask for advice and gain

more knowledge about a particular field. The knowledge that we gain here will be sharper and

more informed.

— Telephonic Interview: A phone interview is a very cost effective way to collection

information. It can last anywhere from 10 to 30 minutes. It is very challenging because

interviewer can‘t see body language of interviewee.

— Face to Face Interview: It is sometimes known as individual interview. It is based on

evaluation method, individual youth, volunteers or parents. The number of interviews and

selection of interviewees will depend upon the purpose, time and resources.

Advantages of Interview:

— It provides deep and free response.

— It is flexible and adaptable method.

— It glimpse into respondent‘s tone, gestures.

— It has ability to probe, follow-up, clarify misunderstanding about questions

Disadvantages of Interview:

— It is costly in time and personnel.

— Sometimes, it become impractical with large numbers of respondents.

— It requires skill among interviewer and interviewee.

— It may be difficult to summarize responses.

— There may be chances of biasness among interviewer, respondent, situation

(ii) Questionnaire: In this type of data collection method, questionnaire is made which

consists of multiple questions. These questionnaires are sent to people via mail, courier or by

hand. This is a useful technique because no one knows your intention and body language. But it

is the time consuming process.
Requirement Gathering

Techniques

Interview Delphi

technique
Questionnaire

Fig. 4.1 Requirement Gathering Techniques

(iii) Delphi technique: The Delphi technique is a reliable and creative method. It begins

with the development of a set of open-ended questions on a specific issue. These questions are

then distributed to various experts. The responses to these questions are summarized and a

second set of questions that seek to clarify areas of agreement and disagreement is formulated

and distributed to the same group of experts.

Advantages of Delphi Technique:

1. It is conducted in writing and does not require face-to-face meetings.

2. It helps to keep attention directly on the issue.

3. It is inexpensive.

Disadvantages of Delphi Technique:

1. Its information comes from a selected group of people and may not be representative.

2. Its tendency is to eliminate extreme positions.

3. It is a time-consuming technique.

4. It requires skill in written communication.

5. It requires adequate time and participant commitment.

(II) Requirement Analysis:

1. The aim of requirement analysis activity is to analyze the gathered data and to obtain

the clear understanding of the software product which is going to be developed.

2. The purpose of this activity is to fully understand the exact requirements of the

customer and remove all ambiguities, incompleteness and inconsistencies in the

requirements.

3. With the help of requirement analysis activity, the system analyst is able to clearly

understand the following basic questions:

⚫ What is the problem?

⚫ What are the exactly data input to the system?

⚫ What are the exactly data output to the system?

⚫ What are the possible procedures?

⚫ What are the possible solutions?

⚫ Why is it important to solve the problem?
Requirement

Gathering

Requirement
Analysis

Requirement
Specification

Requirement
Validation

Fig. 4.2 Steps of Requirement Gathering and Analysis Process

(III) Requirement Specification

1. During the software requirement specification activity, analyzed information is

translated into document form which defines the set of requirements. This document is

known as software requirement specification.

2. The document is basically an agreement or contract between the customer and suppliers

on what the software product is going to do.

3. The document is prepared by the senior analyst (SA).

4. The document specifies two types of requirements i.e. user requirements and system

requirements.

Type of Requirement

User

requirement

System

requirement

Fig. 4.3 Type of Requirement

User requirements are detailed description of customer requirements. Whereas system

requirements are detailed description of the functionality to be provided by the system.

(IV) Requirement Validation:

1. In the requirement validation activity, it is checked that whether the requirements

mentioned in the requirement specification are complete and consistent or not.

2. In this activity, errors are discovered in the requirement documentation. Requirement

documentation is modified to remove the discovered errors.

4.4 SOFTWARE REQUIREMENT SPECIFICATION (SRS)

1. SRS is prepared by the senior analyst (SA).

2. SRS is basically an aggrement between the customer and suppliers on what the

software product is going to do.

3. It is the final outcome of requirement gathering and analysis phase.

4. It is a complete description of behavior. It describes the scope of the product.

5. SRS document specifies the certain functions of a particular software product in a

specific environment.

6. SRS document is very difficult to write. It covers all the requirements of the customer,

functional and non-functional capabilities of the software product.

7. All functions/tasks of software development process are based on the software

requirement specification (SRS).

8. Users of SRS document: Many people use SRS document according to their needs. The

users of SRS document are: customers, software developers, test engineers,

maintenance engineers etc. Software developers use SRS document to ensure that they

are developing the software product according to the customer‘s requirements.

Maintenance engineers use SRS document to understand the functionality of the

software product.

4.4.1 Need of SRS document

1. SRS removes the communication gap between customer and supplier.

2. SRS document helps the client‘s/customer‘s to fully understand his/her own needs

along with the developer‘s capabilities. It forces client to think and visualize his/her

needs and discuss with developer in detail.

3. SRS document almost guarantees that after the development of software product, the

client will be happy with this project.

4. With the help of SRS document, the client can determine whether the software product

meets his/her requirements or not.

5. If a good quality SRS document is used in the software development process, then the

developed software product is of high quality and low cost. The software can be

developed and delivered in a fixed duration.

4.4.2 Attributes/characteristics of SRS document

The following are the attributes or characteristics of SRS document which enhances the

quality of a software product.

1. SRS should be complete. The complete SRS specifies everything about the software

product. The complete SRS includes a table of contents, page number, figure numbers

etc.

2. SRS should be modifiable in easy manner when requirements are changed.

3. SRS should be unambiguous. Single requirement should have only one interpretation.

Single requirement with many interpretation leads to confusion state and developed

unsatisfactory software product.

4. SRS should be precise. It is used as a blue print for the coding in a program. It should

also follow writing standards. SRS should precisely defines the system‘s capabilities

along with interfaces.

5. SRS should be accurate. It should specifies exact requirements of the customer and

system. The correct SRS clearly explains the functional and non-functional capabilities

of the system.

6. SRS should be testable. The good SRS document easily identifies and removes its

errors.

7. SRS should be traceable. Each requirement in SRS document should be traceable from

source to implementation. It should also be able to work in backward direction means

from implementation to source in necessary conditions.

8. SRS document should be consistent. Its capabilities, functions and performance levels

should compatible and consistent. An SRS should not suffer with conflicting terms,

conflicting characteristics and contradictory specifications.

9. SRS should be verifiable. Every single requirement in the document should be

verifiable against the developed software product. It removes the communication gap

between client and supplier.

10. SRS should be valid. It should be written in natural language so that all participants can

easily understand, analyze and accept it.

11. SRS should be well structured. A well-structured SRS document is easy to understand

and modify.

Verifiable

Complete

Modifiable

Consistent

Traceable

Attributes of

SRS document

Testable

Accurate

Unambiguous

Precise

Fig. 4.4 Attributes of SRS Document

4.4.3 Structure/Organization of SRS

The SRS document should be organized in proper sections. The following is the structure

of SRS document.

Fig. 4.5 Structure of SRS

The following are the explanation of structure of SRS document. These sections are also

known as components of SRS document.

1. Introduction: It explains the context in which the system in being developed. It

provides the overall description and environment characteristics of the system. The

environmental characteristics specifies the hardware (central processing unit usage, memory

usage, network communication etc.) on which the system will run. It also explains the people

who are involved in the development and usage of the system. This section also explains the

definitions, acronyms and abbreviations such as QoS: Quality of Service. It meets what users

actually want and maximize their utility, GUI: Graphical user interface, CPU: Central processing

unit of a computer etc.

2. Goal of Implementation: It offers some general suggestions regarding software

development. It provides guidelines for the successful development of software product. It is not

tested by the user at the time of acceptance testing.

3. Functional Requirements: It is the critical part of the SRS. It explains all the

functionalities required by the user. It specifies which output should be produced from the given

input.All the operations to be performed on input data is specified in this document. It describes

the relationship between input and output of the system. For each functional requirement, a

detailed description of all the inputs, their resources, unit of measure and the range of valid

inputs must be specified.

4. Non-Functional Requirements: This section explains the characteristics of the system

such as maintainability, portability, throughput, usability etc. It explains the external interface

1. Introduction

a. Purpose

b. Overview
c. Environmental Characteristics

• Hardware

• Peripheral

• People

d. Definitions, Acronyms and Abbreviations

2. Goal of Implementation

3. Functional Requirements

a. User Class I

• Functional Requirement

• Functional Requirements

b. User Class II

• Functional Requirements

• Functional Requirements and so on

4. Non-Functional Requirements

a. External Interface

(i) User Interface

(ii) Software Interface

(iii) Communication Interface

b. Constraints

c. Performance Requirements.

5. Behavioural Description

a. System States

b. Events and Actions

(user interface, software interface and communication interface) of the system.It also specify the

constraints which restrict the choice of design like security, reliability and fault tolerance. All the

requirements related to performance are clearly specifies. The performance requirements are of

two types:

⚫ Static requirements: These requirements do not impose constraints on the execution

behaviour of the system.

⚫ Dynamic requirements: These requirements specify constraints on the execution

behaviour of the system.

5. Behavioural Description: It is used to specify the possible states of the system and the

transitions among these states due to occurrence of the system. It is not necessary for all the

system.

4.4.4 Reasons of Bad SRS Document

The following are the reasons of bad SRS document:

1. Ambiguous:The SRS document specify an ambiguity in the requirement. It arises many

interpretations of that requirement.

2. Incomplete: Some requirements have been overlooked and the document left many

important aspects of the requirement.

3. Inconsistent: The requirements in SRS document contradicts each other.

4. Unstructured: The document is not in structured manner and makes confusion among

developers and users.

5. Over specification: It restricts the freedom of the designer in arriving at good design.

6. Wishful thinking: When the document specify those requirements which are very

difficult to achieve.

4.5 STRUCTURED ANALYSIS

1. Structured analysis is the activity of deriving a structured model of the system

requirements.

2. Structured analysis techniques help an analyst to decide what type of information is

obtained at different points in analysis.

3. It helps to organize information in such a manner that analyst is not over-burdened with

complex problems.

4. It is basically a technique/methodology which is used to build a system model which

explains the flow and content of information.

5. Special notations and symbols are used to describe the system functionality.

4.5.1 Objectives of Structured Analysis

1. The aim of the structured analysis is to define a set of requirements that can be

validated once the software is built.

2. It describes the requirements of the customer.

3. It establishes a base for the software design creation.

4. It is basically a documentation for the system which describes the clear and complete

specification.

4.5.2 Principles of Structured Analysis

The structured analysis approach follows the following principles:

1. The behavior of the system must be represented.

2. The functions that the software is to perform must be defined.

3. The analysis process should move from essential information towards implementation

detail.

4. The model should be partitioned in such a way that details should show in a

hierarchical manner.

5. The problem of the software must be understood and represented.

4.6 TOOLS FOR STRUCTURED ANALYSIS

The following are the tools used for structured analysis:

(I) Data Flow Diagram (DFD)

(II) Data Dictionary (DD)

(III) Process Specification (P-Spec)

(IV) State Transition Diagram (STD)

(V) Entity Relationship Diagram (ERD)

Tools for Structured Analysis

Data Flow

Diagram (DFD)
Data

Dictionary (DD)
Process Specification

(P-Spec)

State Transition

Diagram (STD)

Entity Relationship

Diagram (ERD)

Decision

Tree
Decision

Table

Structure

English

Fig. 4.6 Structured Analysis Tools

I. Data Flow Diagram (DFD):

1. It was developed by Larry Constantine. It is also known as bubble chart.

2. It is a graphic representation of the flow of data or information through a system

3. It represents the logical data flow rather than how they are processed. It only show the

flow of data through the system.

4. It consists of a series of bubbles joined by lines.The bubbles represent data

transformations and lines represent data flow.

5. DFD can be partitioned into levels. Each level has more information flow and data
functional details than the previous level.

6. Symbols of the DFD: There are different types of symbols used to construct DFDs. The

meaning of eachsymbol is explained below:

Table 4.1

7. Rules for the construction of DFD:

(i) The direction of flow of data is from top to bottom and from left to right.

(ii) The names of sources, data stores and destinations are written in capital letters.

(iii) The processes are named and numbered for easy reference. When a process is exploded

into lower level details, it is also numbered.

8. Level of DFD:

(i) Level 0: It is also known as context level DFDs or highest abstraction level DFDs. It

depicts the entire information system as one diagram covering all the essential details. It

represents scope of the system and identifies external entities and related inputs and outputs

(ii) Level 1: It depicts basic modules and flow of data among various modules The Level 0

DFD is broken down into more specific, Level 1 DFD. It provides overview of full system. It

identifies major processes and data stores.

(iii) Level 2: At this level, DFD shows how data flows inside the modules mentioned in

Level 1. It describes the deeper level of understanding unless the desired level of specification is

achieved. Level 1 process is expanded into more detail.

Advantages of DFD:

1. Data flow diagrams are easy to understand check and change data.

2. It give a very clear and simple look at the organization of the interfaces between an

application and the people or other applications that use it.

3. It is an effective and efficient method in the absence of required design.

4. It is not limited to software.

Disadvantages of DFD:

1. Modification to a data layout in data flow diagram may cause the entire layout to be

changed.

2. Maintenance of data flow diagram is harder, more costly and error prone because in the

large application, number of units in a DFD are high and changes are impractical to be

made on DFDs.

II. Data Dictionary (DD):

Sr. No. Symbol Meaning

1.
Source or
destination
of data

2.
Process which
tranforms
data flow

3. Data flow

4. Data Store

1. It is also known as Meta data. A data dictionary is a structured repository of data about

data.

2. It is a centralized collection of information.

3. It stores meaning and origin of data, its relationship with other data, data format for

usage etc.

4. It removes any chance of ambiguity and helps to synchronize the working of
programmers and designers.

5. It is an important and essential step in building a database.

6. Data dictionary contains following information:

(i) Data Element: It is a smallest unit of data which has no further decomposition. It

provides the description of data like: name, source, date of origin, users etc.

(ii) Data Structure: A data structure is a systematic way of organizing and accessing data.

It explains how data are stored in a computer.

(iii) Data Flow: Data flows are data structures in motion.

(iv) Data Stores: Data flows are data structures at rest. It includes files and tables which

stores the information from where the data enters into the system and exists out of the

system.

III. Process Specification (P-Spec):

1. It is used to define all the processes which appear in the DFD.

2. All bottom level processes are specified.

3. The tools of process specification are:

Decision Tree • It is a way of breaking down the complicated situation into easier to

understand scenario.

• Graphical technique representing decisions using a series of nodes and

branches

• Each node is a decision point - a choice has to be made

• Each branch has a corresponding value to the decision choice

• Subsequent action is the result.

• It is easy to understand, no need for special training.

Decision Table • Representation of logic that is part of the processing

• Based on a set of conditions, different actions will be performed

• Can be simplified by removing impossible actions

• Used when the process result is based around several different

variables and the logic gets too complex for other methods

Structure English • In Structured English, decisions are made through IF, THEN and

ELSE statements.

• It can use CASE construction as well as LOOP construction.

• It is basically a subset of English with restrictions on usage.

• It can use some acceptable verbs such as FIND, ADD, SUBTRACT,

MULTIPLY, DELETE etc.

Table : 4.2

IV. State Transition Diagram (STD):

⚫ It represent a process specification for a control bubble in DFD.

e

ed by

⚫ It is a tool for representing the design.

⚫ It has one initial state and may have multiple final states.

⚫ State transition diagrams have 4 components :

States It is some behavior of a system that is observable and that lasts for some

period of time like doing, waiting etc.

Transitions It is an instantaneous change in state/behavior.

Conditions A condition is typically some kind of event. It is an event in the external

environment which triggers a transition to a new state.

Actions An action is the appropriate output or response to the event. It is a

response sent back to the external environment whose result is stored by

the system.

Table : 4.3

V. Entity Relationship Diagram (ERD)

1. Entity relationship diagram is based on real world. It is a collection of entities (objects)

and relationship among entities.

2. Entity relationship model has mainly three components:

(i) Entity

(ii) Attributes

(iii) Relationship

(i) Entity:

E-R Model

Fig.4.7 E-R Model

⚫ Entity is a person, place or thing which can be identifies.

⚫ It is represented by rectangl

⚫ It is of two types:

Weak entity: It depends upon some other entity. It is represented by

Strong entity: It is not dependent on some other entity. It is represent

(ii) Attributes:

⚫ Attributes are the properties of entity.

⚫ It is represented by ellipse

⚫ It is of four types:

Single attribute: These attributes cannot divided into subparts.

Customer Deposit Account

Customer

Date of Birth Age

Department Department
Head

Customer Item

Derived attribute: The value of these attributes are derived from another attribute.

Multivalued attribute: These attributes have more than one value.

Composite attribute: The value of these attributes can be divided into another attributes.

(iii) Relationship:

⚫ It is used to connect entities. The entity involved in relationship is known as

participants.

⚫ The number of participants in a given relationship is known as degree of relationship.

⚫ It is of four types:

One to one relationship:In one to one relationship, for one record in entity A, there is

exactly one record in entity B.

One to many relationship: In one to many relationship, for one record in entity A, there is

more than one record in entity B.

Many to one relationship: In many to one relationship, for many records in entity A, there

is only one record in entity B.

Many to many relationship: In many to many relationship, for many records in entity A,

there are many records in entity B.

Customer name

Customer

First Name

Name

Last Name

Customer

Department Employee

Employee Department

COURSE: SOFTWARE ENGINEERING

UNIT 5: SOFTWARE DESIGN

5.1 Introduction

5.1.1 Outcomes of a Design Process

5.1.2 Classification of Design Activities

5.1.3 Classification of Design Methodologies

5.1.3.1 Procedural Approach

5.1.3.2 Object Oriented Approach

5.2 Objective of Software Design

5.3 Criteria of Effective Software Design

5.4 Design Principles

5.5 Design Steps

5.6 Design Concepts

5.7 Design Quality Metrics

5.7.1 Cohesion

5.7.2 Coupling

5.7.2.1 Types of Coupling

5.8 Data Design

5.9 Architectural Design

5.10 Procedural Design (Function Oriented Design)

5.11 Structured Design Methodology (SDM)

5.12 Design Verification

5.1 INTRODUCTION

Software design is a process of transforming the customer requirements into a form that is

implementable by using a programming language. It is a very creative process. It is the basis of effective

engineering. It should be practiced and learnt by experience and study of the already existing systems.

The design phase begins when the requirements document is available. This is the first phase of

transforming the problem into a solution. The design process is made up of a set of principles, concepts

and practices which help a software engineer to model the system or product that is to be developed.
According to the Stevens in 1991, ―Software Design is the process of inventing and selecting

programs that meet the objectives for a software system.‖

In the words of Coad and Yourdon, ―Software Design is the practice of taking a specification of

externally observable behavior and adding details needed for actual computer system implementation,

including human interaction, task management and data management detail.‖

5.1.1 Outcomes of a Design Process

The Design Process is an activity in which software requirements are studied and analyzed to

produce a description of the internal structure and organization of the system. During the software design

phase, many serious, strategic, technical decisions are taken to achieve the required functional and quality

requirements of a system. These decisions help in developing the software in a successful manner and

carry out its maintenance in a well-defined manner to improve the quality of the Final Product. Software

design transforms the problem into a solution. In this phase the customer requirements, the business

requirements and the technical needs, all come together to formulate a product or a system.

5.1.2 Classification of Design Activities

A good software design can never be achieved by using a single step procedure but requires several

steps. Software Design is an activity in which software requirements are studied analyze and then a

systematic procedure is adopted to produce a description of the internal structure and organization of the

system that becomes the basis of its construction. Broadly speaking thus are two activities.
1. Software Architectural Design

2. Software Implementation Design

The meaning and scope of these two activities tend to vary considerably. In software architectural

design, the top level structure and organization of the system is described and different components are

identified. The system is decomposed and organized into components and interfaces between these

components are described. The outcome of this architectural design is known as Program Structure or

Software Architecture.

In the second activity i.e. the software implementation design, the data structure and the algorithms

of different modules are designed and its outcome is usually known as Module Specification Document.

In this activity each component is sufficiently described to allow for its coding. After studying different

design approaches; seven steps are necessary to obtain a good design these steps are as follows:

(i) Function decomposition, (ii) Interface definition, (iii) Operational time line development, (iv)

Data Definition, (v) Concurrency and real time consideration, (vi) Consolidation, (vii) Test procedure

development.

5.1.3 Classification of Design Methodologies

Software Design is the central activity of software engineering. It is also the integrative activity at

the core of software engineering. The designer should be methodical, disciplined, communicative and

self-analytical. Various design methods are used today. The design principles and concepts lay a

foundation for the creation of a Design Model that encircles around representation of Data, architecture,

interface and components. The major software Design Methods include – (i) Function Oriented Design

Methods, (ii) Data structure leased Design methods, (iii) Object oriented Design Methods, (iv) Reuse

Based Design Methods.

Design Methodology is a very broader area and it is a problem solving activity. Design Methodology

focuses on:

1. Divergence: It applies critical thinking through qualitative and quantitative approach to create

better designs solutions.

2. Transformation: It includes better redefining of specifications of design solutions that leads to

better guidelines for traditional and contemporary design activities.

3. Convergence: Prototypes probable scenarios for better design solutions.

4. Sustainability: It controls systematically the process of exploring, redefining and prototyping

of designs solutions continually overtime.

5. Articulation: It articulates the visual relationship between the parts and the whole.

The true Goal of Design Methodology is to gain key insights to obtain more holistic solutions to

achieve better experiences for users with products, services, environments and systems.

3. Convergence

2. Transformation 4. Sustainability

DESIGN

METHODOLOGY

1. Divergence 5. Articulation

Fig. 5.1: Software Design Methodology

5.1.3.1 Procedural Approach

Procedural design techniques are very common and popular and at present they are being used in

many software organizations. It is the result of focusing full orientation to the function of the program.

This is an approach to software design where the design is decomposed into a set of interacting units

where each unit of module performs a specific function Niklans Wirth who is the creator of Pascal and a

number of other languages are one of the best known advocates of this method. His special variety to

known as step-wise refinement. This stepwise refinement is a top-down strategy where a program is

refined as a hierarchy of increasing levels of detail (Mills 1988). Refinement is actually a process of

elaboration.

Procedural design is also named as component level design. It occurs after data, architectural and

inter face designs have been developed. The aim is to translate the design model into an operational

software.

5.1.3.2 Object Oriented Approach

Object-oriented design is a design strategy of planning a system of interacting objects for the

purpose of solving a reaching a predefined software generated result. These Objects manage their own

private state and offer services to other objects and hide representation of the state to limit access to it.

Object-oriented concepts

The five basic concepts of object-oriented design are:-

1. Object/Class

2. Information hiding

3. Inheritance

4. Interface (object-oriented programming)

5. Polymorphism

5.2 OBJECTIVE OF SOFTWARE DESIGN

Software Design is expected to deliver the requirement as specified in the Feasibility Report. The

quality of the design is assessed with a series of technical reviews or design walk throughs. The main

software objectives which a software design should provide are as follows:

Basic Objectives

1. To produce such models that can be analysed and evaluated to find whether they allow the various

requirements to be fulfilled.

2. To study and evaluate different alternative solutions and trade-offs.

3. To plan the following development activities.

Major Objectives

1. To understand the requirements and to generate the solution to accomplish that requirements.
2. To transform the problem space of the implementation.

3. To solve complex problems by dividing them into a set of sub-problems and then finding partial

solutions easily in a better way.
4. To identify the proper level of detail when design should stop and implementation should start.

5. To define the software architecture and describe if through step by step details.

6. To make the module functionally independent.

7. To implement all the explicit requirements of the Analysis Model.

8. To define the relationship between major structural element of the software.

9. To produce a design that is readable and understandable.

10. To provide a complete picture of the software that can be assessed for quality from an

implementation prospective.
11. To translate the customs requirements into a well-furnished software product or system.

12. To follow a simple design approach so that designs are easily understood, easily built and easily

tested.

13. To accommodate the changes that may be required during its life time.

5.3 CRITERIA OF EFFECTIVE SOFTWARE DESIGN

Most researchers and software engineers agree on certain characteristics that every Good Software

Design must possess. The Goodness of a design depends on the targeted application. The definition of a

Good Software Design can vary depending on the application on which it is based. The characteristics of

a Good and effective Software Design are as under:

1. Correctness—A Good Design must implement correctly all the functionalities of the system.

2. A Good design should be easy to understand.

3. It should be efficient and should accommodate all the implicit requirements desired by the user.

4. It should not be difficult to change.

5. A good design should exhibit on architectural structure with recognizable design patterns.

6. An effective software design should be modular. It should be logically divided into elements

that perform specific functions and sub functions.

7. A good design always possesses will written documents.

8. A design is said to be good and effective if it separates data, procedures and tuning

considerations as far as possible.

9. In a good design, every requirement is testable. If a design cannot be tested easily against its

requirements, then it is unacceptable.

10. Each and every point about the design should be easily communicated to all concerned through

proper abstractions and representations.

11. A good design is liable to be repeated or re-used.

Each of the above characteristics is actually a goal of the design process. The design should be

readable, understandable and must provide a complete picture of the software and if should fulfill the

requirements desired by the customer.

5.4 DESIGN PRINCIPLES

Fundamental Principles for any discipline remain the same throughout. They provide the underline

basis for development and evaluation of techniques. Fundamental concepts of software design include

abstraction, structure, information hiding, modularity, concurrency, verification, testability, discreteness,

and reusability and design aesthetics.

Some factors that help in making good software are creative skill, past experience and an overall

commitment to quality. Davis has suggested a set of principles for software design which have been

adapted and extended in the following list :

1. The Designer Process should not suffer from tunnel ―Vision‖. A Good designer applies

alternative approaches judging each according to the requirements of the problem and also

takes into consideration the resources available to do the job.

2. The design should be traceable to the analysis model — A Good design must have means to

track how the requirements have been satisfied.

3. The design should not re-invent the wheel — A set of design patterns should be chosen as an

alternative to re invention. Design time should be used to represent truly new ideas and

integrate all preexisting patterns.

4. The design should ―minimize the intellectual distance‖ between the software and the problem

as if exists in the real world.
5. The design should exhibit uniformity and integration.

6. The design should be structured to accommodate change.

7. The design should be structured to degrade gently, even when data, events or operating

conditions are encountered. If should be designed to adjust according to the unusual

circumstances.

8. Design is not coding and coding is not design — even when detailed procedural designs are

produced, the level of abstraction of the design model is higher than source code design

decisions at the coding level address the small implementation details which enables the

procedural design to be coded.
9. The design should be assessed for quality as if being created not after the fact.

10. The design should be reviewed to minimize conceptual errors.

By following the design principles, Software Engineer produces a design of high quality which

shows both external and internal quality factors. The user readily observes the external qualities (Speed,

correctness, usability and reliability etc.). The internal quality factors are of immense significance to the

Software Engineer. The designer must understand basic principles to create a high quality design from the

technical perspective.

5.5 DESIGN STEPS

By critically examining and evaluating different design approaches, seven steps have been devised

which should be followed to obtain a good design. These steps are as follows:

1. Function Decomposition: In the step software product is partitioned into smaller components.

Rules are observed to assure that recombining and reassembling the components to intelligent testing

scenarios which helps the management in maintaining control over the process. Block diagrams, structure

charts and tools are the software development tools. Some characteristics and constraints for partitioning

are as follows:

(a) Unit Testing Improvement

(b) System testing enhancement

(c) Cohesion and coupling

(d) Managerial Visibility

(e) Managerial control

(f) Information hiding

(g) Contractual an organizational compatibility

(h) Data, time dependency and function separation within limits.

The components are the building blocks. The partitioning step is the realization of a structure or

architecture for the final design of the software product.

2. Interface Definition: Component to component and component to external interface are

identified and defined. Many tools like object diagrams, data flow diagrams, timing chart and data

dictionaries support this step. Another requirement of this step is to provide interface information that a

designer, coder and tester needs for using other design components in developing a software product.

3. Operational time line Development: In this step realistic operational timeline or scenario to

exercise are developed for each design step. These timelines should have operator interactions with the

system.

4. Data Definition: This step is linked to develop data structures and this step serves the purpose

of defining the files, records, fields, access methods, global and local data structure and the procedure to

maintain files. Transactions are chalked out and the file size estimates are made. Tools for this step are

data dictionary, information modeling and entity relation diagrams.
5. Concurrency and Real Time Considerations: The fifth step is linked to concurrence and real-

time requirement. It is strongly desired to decouple timing requirements and their design and correctness

tests from function, performance and data correctness. This step is used to establish the timing for the

design component. The tools used for this step are timeline extensions to data flow diagrams and

McCabe‘s analysis approach.

6. Consolidation: Information gathered from in steps one to five and a realization of the

consolidated design information is used as a direction to coders in the form of diagrams, pseudo code

structured English or any other form of program design languages.

7. Test procedure Development: This step studies those ways and means by which the design

can be tested as a design component and finds how the design component contributes to confirm a system

level acceptance criteria. This slip helps in verification that all requirements in the software requirements

specifications have been met and traces if to implementation in the system design specifications.

Control hierarchy and data structure are too important aspects of the overall software products

Architecture.

Control Hierarchy: The control relationship among various components of the product is

sometime, referred to as visible. Each component has access to many other components and connectivity

is done only to those components directly involved by the given component.

Data Structure: It is a representation of the relationship among data items in a software product

design organization, access methods and controls, definitions, degree of association etc.

Data structure is consistent with overall architecture and if stays connected with control and

procedure design throughout the design process. Formal design reviews can be inserted at proper interval

to ensure that design efforts are fully coordinated.

5.6 DESIGN CONCEPTS

By following a rigorous approach in any engineering activity, satisfactory products can be produced.

We can control. The costs of the products and increase their reliability. This does not mean to constrain

creativity rather if improves the engineer‘s confidence in precision and accuracy. He brings creative

results after critically analyzing in the light of a rigorous assessment.

Some basic steps have been devised over the past four decades which provides a basis to the

software designer to apply more sophisticated design methods. He becomes capable of knowing different

criteria to partition software into individual components; he comes to know how data structure detail can

be separated from a conceptual representation of the software.

In the words of M.A. Jackson, ―The beginning of Wisdom for a software engineer is to recognize the

difference between getting a program to work and getting if right‖. The basic concepts for the Software

Design are given below:

1. Abstraction

2. Refinement

3. Modularity

4. Software Architecture

5. Control Hierarchy

6. Structural Partitioning

7. Data Structure

8. Software Procedure

9. Information Hiding

Abstraction Refinement Modularity Software Control Structural Data Software Information

Architecture Hierarchy Partitioning Structure Procedure Hiding

Fig. 5.2: Design Concepts

1. Abstraction: It is a very powerful concept and an intellectual tool used in all engineering

disciplines which permits a designer to consider a component at an abstract level without worrying about

the details of the implementation of the component. It is a special case of separation of concerns where in

concern of the important aspect is separated from the concern of the unimportant details. Abstraction is an

indispensable part of the design process and is essential for problem partitioning. Abstracts is used to

existing components as well as components that are being designed. Abstraction of existing components

plays a vital role in the maintenance of the system and we become able to modify the system in a step

wise manner. Abstraction reduces the information content of a concept or an observable phenomenon,

typically to retain relevant information for a particular purpose. Abstracting happiness to an emotional

state of mind reduces the amount of information conveyed about the emotional state. There are different

levels of abstractions. These levels are as follows:

(i) Data Abstraction: In Data Abstraction; the component is specified by the data types or data

object and operations that performed on data object. Like any data object, the data abstraction

for door would comprise of a set of characteristics (e.g. door type, swing direction, opening

mechanism, weight, length, breadth, height etc.) Many modern programming languages provide

mechanisms for creating abstract data types.

(ii) Procedural Abstraction: It is a named sequence of instructions that has a specific and limited

function. In procedural abstraction component is specified by the function if performs e.g. Auto

sum function in Excel. OR the word open for a door that implies a long series of procedural

steps (i.e. walk to the door, reach out and grasp knob, turn knob end pull door, step away from

moving door etc.)

(iii) Control Abstraction: It means a program control mechanism without specifying internal

details. If describes the external behavior of that component. In example of a control abstraction

is the Synchronization Semaphore used to co-ordinate activities in an operating system.

(iv) Cluster Abstraction: In cluster abstraction the component in a group of related classes that

work together. These are also called framework e.g. for net frame work.

2. Refinement: Stepwise refinement is a top down strategy where in a program is refined in the

form of hierarchy. In this technique decomposing of a system is done from high level specifications into

more elementary levels. In each step, one part of high level description is taken and refined. It is actually

a process of elaboration. Refinement is also known as ―Stepwise Program Development and Successive

Refinement‖ Niklans Wirth suggested following activities:

(i) Decomposing design decisions to elementary levels.

(ii) Isolating design aspects those are not truly independent.

(iii) Postponing decisions concerning representation details as long as possible.

Design Concepts

(iv) Carefully demonstrating that each successive step in the refinement process is a faithful

expansion of previous steps.

The following steps should be revised at each level in the design:

(a) Study and understand the problem.

(b) Identify gross features of at least one possible solution.

(c) Describe each abstraction used in the solution in some design description language.

Refinement begins with the specifications which are derived during requirements analysis and

external design. It is a very effective method for describing small sized programs but fails in the large

sized programs refinement helps the designer to know low-level details as design progresses.

3. Modularity: The real power of partitioning comes if a system is partitioned into modules, so

that these modules are solvable and modifiable separately. It is a program unit. A module can be a macro,

a function, a procedure a process or a package. Some criteria is followed to select modules so that

modules support well defined abstractions e.g. coupling and cohesion are two modularization criteria used

in Functional Abstraction.

Modularity promotes design clarity which cases implementation, debugging, testing, documenting

and maintenance of the software product. A modular system has the following characteristics:

(i) Each Processing Abstraction is a well-defined sub system which can be effectively used in

other applications.
(ii) Each function has a single well defined motto.

(iii) Each function manipulates only one major data structure.

(iv) Functions share global data selectively. It is convenient to identify all solutions that share a

major data structure.

(v) Functions that control instances of Abstract Data types are encapsulated with the data structure

being manipulates.

4. Software Architecture: Shaw and Garlan (1996) suggested that Software Architecture is the

initial step in producing a software design. They gave three design levels namely Architecture Design,

Code Design and Executable design.

Software Architecture is the hierarchal structure of Program Components (Modules) and expresses

the way in which these components interact and structure of data used by the components.

Architecture Design: It links the system capabilities observed in the requirements specification with

the system components that will implement them. The architecture describes the inter connections among

different modules. He also defines operators who create systems from sub systems.

Code Design: If involves algorithms and data structures the components such as programming

languages primitives such as numbers, characters, pointers and control threads. There as primitive

operators which involves the language‘s arithmetic and data manipulation primitives and composition

mechanisms (arrays, files, procedures)

Executable Design: The code design is studied of a lower level of detail. It discusses memory

allocation, data formats, bit patterns and so on.

Keeping all the above mentioned specifications the architectural design can be represented using any

number of the following models in the figure of system I and system II, it is to be noted how one

component is connected to the other only when the first component can invoke the other. For a given

component, the set of other components to which arrows are drawn is called scope of control of the

components. The components invoked by the given component are collectively referred to a scope of

effect e.g. in System I-II, are two possible designs for the same system. It should be noted that no

component should be in the scope of effect; if it is not in the scope of control. If the scope of the effect is

wider than the scope of its control, if is almost impossible to give assurance that a change to the

component will not damage the whole design.

Fan in: It is the number of components controlling a particular component.

A

B C D

E F G

A

B C D E F

G

Function I Function III

Fan out: It is the number of components controlled by a component. Component ―A‖ has a fan-out

of 3 in system I but a fan-out 5 in system II.
Fan in for component ‗C‘ is 1 in both systems.

Generally a system with high fan-out tries to minimize the number of components. The controlling

component performs more than one function. Comparing in this way system I with low fan out may be

better than System II.

Studying from another angle, when number of levels are increased a particular component is used

more than once. If we design one general purpose component to do that task, the results design is more

efficient and easier to test. In such cases design with a large number of levels is considered better one of

the goals in designing systems is creating such components which have high fan in and low fan-out.

(a) Structural Models: It puts forth Architecture as a systematized collection of program

components.

(b) Frame Work Models: These models enhance the level of design abstraction. If tries to identify

architectural design frameworks that appear in similar types of applications.

(c) Dynamic Models: They address the behavioral aspects by indicating how the system

configuration may be changed as a function of external events.
(d) Process Models: They lay emphasis on the design of the business or the technical process.

(e) Functional Models: These models can be used to represent the functional hierarchy of a

system.

5. Control Hierarchy: It represents the organization of program components and if shows a

hierarchy of control. It does not represent procedural aspects of software. It does not apply to all

architectural styles. Number of components under the control of a particular component can be

represented diagrammatically as under.

System-I System-I

Fig. 5.3: One component controlling other components

6. Structural Partitioning: When the architectural style of a design follows a hierarchical nature,

the program structure can be partitioned either horizontally or vertically.

Horizontal Partitioning: In this method the control modules (shown as shaded boxes) are used to

co-ordinate communications between functions and execution of the functions. It has the following

benefits:

⚫ It results in software that is easier to best and maintain.
⚫ It results propagation of fewer side effects.

⚫ It results in software that is either to extend.
Function II

Fig. 5.4: Horizontal Partitioning

Disadvantage of Horizontal Partitioning: In this more data has to be passed across the module

interface. This complicates the overall control flow of the problem, especially during speedy movement

from one function to another.

Vertical Partitioning: This is also called factoring. In this the control (decision making) modules

are located at the top and work is distributed in a top down manner in the program structure. Top level

models perform control functions and do little processing. Modules that reside low in the structure

perform all input, computation and output tasks.

The nature of change in the program structures requires vertical partitioning because a change in a

control module (high in the structure) will have a higher probability of propagating side effects to

modules that are subordinate to it. A change to a worker module (low level in the structure) is less likely

to propagate side effects. Therefore vertically partitioned structures will be more maintainable a key

quality factor.
Decision

Fig. 5.5: Vertical Partitioning

7. Data Structure: Data structure is a representation of the logical relationship among individual

elements of the data. As the structure of information has a great effect on the final procedural design. Data

structure has an effect on the organization methods of access degree of associativity and processing

alternatives for information. Although organization and complexity of a data structure depend on the

thinking and skill of the designer, yet a limited number of classic data structures form the building blocks

for more highly skilled and well-designed structures.

A scalar item represents a single element of information and it is the simplest form of data structure.

Its access may be achieved by assigning a single address in the memory. The size and format of a scalar

item are controlled by a programming language and they may very within limits. A scalar item may be a

logical entity of one bit length, an integer or floating point number being 8 to 64 bits long or a character

string that is hundreds or thousands of bytes long.

When scalar items are well organized in the form of a list or a group, sequential vector is formed.

Vectors open the door to variable indexing of information.

When the sequential vector is extended to two, three and finally an arbitrary number of dimensions,

an n-dimensional space is created. In many programming languages, an n-dimensional space is called an

array. Two dimensional matrix is the commonest n-dimensional space.

Items, vectors and spaces may be organized in various formats & linked list is a data structure that

organizes noncontiguous scalar items, vectors or spaces in a manner (called nodes) so that they may be

processed as a list. Each node contains the appropriate data organization and one or more pointers that

indicate the address in storage of the next node in the list. Nodes may be added at any point in the list. It

is done by redefining pointers to accommodate the new list entry. Other data structure is constructed

using the fundamental data structures. A hierarchical structure is commonly encountered in applications

that require information categorization and associativity. Data structure can be represented at different

levels of abstraction. For example, a stock is a conceptual model of a data structure which can be

implemented as a vector or a linked list. The internal working of a stock depends on the level of design

detail.

8. Software Procedure: Program structure defines control hierarchy without taking into

consideration sequence of processing and decisions whereas software procedure focuses on the processing

details of each module individually. Procedure must provide a precise specification of processing

including sequence of events, exact decision points, repeatable operations and even data organization and

Making Modules

Worker
Modules

structure. There is a relationship between structure and procedure. A procedural representation of

software is layered. The processing indicated for each module must include a reference to all modules

subordinate to the module being described as is clear from the diagram given below:

Procedure for
Super ordinate Module

Procedure for
Subordinate Module

Procedure for ultimately
Subordinate Module

Fig. 5.6: Layered Software Procedure

9. Information Hiding: Modules should be designed and specified in such a way that each

module in the system hides the internal details of its processing activities and modules may communicate

through well-defined interfaces. The way of hiding in necessary details is known as Information Hiding.

IEEE defines it as ―the technique of encapsulating software design decisions in modules in such a way

that the modules interfaces reveal as little as possible about the module‘s inner workings; this each

module is a ‗black box‘ to the other modules in the system.‖

According to Parnas, design should begin with a list of difficult design decisions and design

decisions that are likely to change. Each module is designed to hide difficult and changeable design

decisions because these design decisions transcend. Execution time, design modules may not correspond

to processing steps in the implementation of the system.

Information Hiding is of much significance when modifications are required during the testing and

maintenance phase. In object oriented design it gives rise to the concepts of encapsulation, modularity and

is also linked to the concept of abstraction. Information hiding also hides the following information‘s:

(i) A data structure, its internal linkage and the implementation details of the procedure.
(ii) The format of control blocks such as those for queues in an operating system.

(iii) Character codes, ordering of character sets, shifting masking and other machine dependent

details.

Advantages of Information Hiding

(i) It reduces the likelihood of adverse effects.
(ii) Leads to low coupling.

(iii) Attaches importance to communication through controlled interfaces.

(iv) Limits the global impact of local design decisions.

(v) Helps in producing higher quality software.

5.7 DESIGN QUALITY METRICS

Design quality metrics is a methodology of determining the quality of a design. A design is supposed

to be good if it implements a specification correctly and allows efficient code to be produced. A good

design is one which is maintainable and understandable. A maintainable design can be adapted to modify

existing functions and add new functionality. The design components should be cohesive as they should

have close logical relationship. They should be loosely coupled and should not be tightly integrated.

Design quality metrics are used to assess the quality of design. Coupling & cohesion measures have been

developed in conjunction with functional.

5.7.1 Cohesion

The internal cohesion of a module is measured in terms of the close of the relationship between its

components or in other words as the strength of binding elements within the module. Cohesion occurs on

the scale of weakest elements (least desirable) to strongest elements (most desirable). It shows how tightly

the elements of the module are attached to one another. A component should implement a single logical

function or a single logical entity. Contribution to implementation should be from parts of components.

There is no need to modify many components if a change is desired. Cohesion gives the designer an idea

about whether or not the different elements of a module belong together in the same module.

Constantive and Yourdon identify seven different levels of cohesion in order of increasing strength:

1. Coincidental 2. Logical

3. Temporal 4. Procedural

5. Communicational

7. Functional

6. Sequential

 Cohesion

Coincidental Logical Temporal Procedural Communicational Sequential Functional

Fig. 5.7: Cohesion

1. Coincidental: If occurs when there is no meaningful relationship among the elements of a

Module. Unrelated functions, processes or Data are present in the same component for the reasons of

easiness serendipity. Coincidental cohesion can happen if an existing program is ‗modularized‘ by cutting

if into pieces and creating different pie modules. If a module is created to save duplicate code by

combination some part of the code that occurs at many different places that module may have

coincidental cohesion. In General, it is not wise to create a most merely to avoid duplicate code or chop a

module to reduce the module size.

2. Logical Cohesion: A module is said to have logical cohesion if there is logical relationship

between the elements of a module. Several logically related functions or data elements are kept in the

same component. A typical example of this type of cohesion is a module that performs all the inputs or all

the outputs. One component may read all types of input (from tape, disc or telecommunications port). It

does not matter where the input is coming from or how it will be used. Although it is more reasonable

than coincidental cohesion, the elements of a logically cohesive component are not related functionally. In

general, logically cohesive modules should be avoided, if possible.

3. Temporal Cohesion: Temporal cohesion and logical cohesion are similar except that in

temporal cohesion the elements a related in time and are executed together. Modules that perform

activities like ―Initialization‖ ―clean up‖ and ―Termination‖ a generally temporally bound. This avoids the

problem of passing the flag and the code is generally simpler.

4. Procedural Cohesion: A procedurally cohesive module contains elements that belong to a

common procedural unit. Sometimes it is needed that functions must be performed in a certain order e.g.

Data must be entered before they can be checked and then manipulated; all these three functions in a

specific order. When functions are grouped together in a component to maintain a proper procedure, the

component is procedurally cohesive. Such modules occur when modular structure is determined from

same form of flow chart. Procedural cohesion, often, cuts across functional times.

5. Communicational Cohesion: In this type of cohesion, elements are related to each other by a

reference to same input or output data because they operate on or produce the same data set. Sometime,

unrelated data are fetched together because if can be done with only one disc or tape access.

Communicably cohesive modules can do more than one function. e.g. ―Print and Punch record‖. It is to be

noted that sometimes communicational cohesion may destroy the modularity and functional independence

of the design.

FUNCTION A

FUNCTION
B

FUNCTION
D

FUNCTION
C

FUNCTION
E

COINCIDENTAL
PARTS UNRELATED

LOGICAL
Similar Functions

TEMPORAL
Related by time

PROCEDURAL

Related by order of
functions

COMMUNICATIONAL
Access same Data

SEQUENTIAL

Output of one Part
is input to another

FUNCTIONAL
Sequential with complete,

related functions

Fig. 5.8: Examples of Cohesion

6. Sequential Cohesion: When the output from one part of a component forms the input to the

next part, we get sequential cohesion. Sequential cohesion does not provide any directions on how to

combine them into modules. Different possibilities exist:

(a) Combine all in one module.

(b) Put the first half in one and the second half in another.

(c) The first third in one and the rest in the other and so on sequentially cohesive modules bear a

close resemblance to the problem structure however they are still considered to be for from the

ideal; which is function cohesion.

7. Functional Cohesion: Functional cohesion is the strongest cohesion. In this type of cohesion,

every processing element is necessary for the performance of a single function and all the desired

elements are contained in one component. A functionally cohesive component performs only and only

that function for which it is designed and nothing else.

A cohesive object is one in which a single entity is represented and all the operations on that entity

are included with the object. Such a cohesion called object cohesion is a new class of cohesion in which

each operation provides functionality which permits the characteristics of the object to be modified,

inspected or used as a basis for service provision.

FUNCTION A

FUNCTION B

FUNCTION C

DATA

FUNCTION A

FUNCTION B

FUNCTION C

FUNCTION A

FUNCTION B

FUNCTION C

FUNCTION A

FUNCTION B

FUNCTION C

FUNCTION A

Logic FUNCTION A'

FUNCTION A''

TIME TO

TIME TO + X

TIME TO + 2X

Uncoupled
No Dependencies

Loosely Coupled
Some Dependencies

Highly Coupled
Many Dependencies

Module

Module

Module

Module

5.7.2 Coupling

Coupling is the degree to which each program module relies on each one of the other modules.

Coupling is a property of a collection of modules. It is an indication of the strength of the inter

connections between the components in a design. Highly coupled systems have strong inter-connections

with program units dependent on each other. Loosely coupled systems on the other hand are made up of

components which are independent or almost independent. Loose coupling is desirable for good software

engineering but tight coupling may be necessary for maximum performance. Uncoupled components have

no inter connections at all coupling depends on several things:

(i) The references made from one component to another.

(ii) The amount of data passed from one component to another.

(iii) The amount of control one component has over the other.

(iv) The degree of complexity in the interface between components.

The following diagram showing component coupling explains everything. Dependency between

modules has been shown by taking four modules A, B, C and D.

Module

A

 Module

B
Module

A
Module

B

Module

C

 Module

D
Module

C
Module

A

Fig. 5.9: Coupling

Coupling can be measured from complete dependence to complete independence. Actually a system

can not be built of completely uncoupled components. When coupling is high, large parts of the system

may be perturbed by the change. Low coupling helps in minimizing the number of components requiring

revision.

5.7.2.1 Types of Coupling

Some types of coupling, in order of highest to lowest coupling are as follows: 1. Content coupling, 2.

Common coupling, 3. External coupling, 4. control coupling, 5. Stamp coupling, 6. Data coupling

message coupling

pling
Content Coupling

Common Coupling

External Coupling

Control Coupling

Stamp Coupling

Data Coupling

Message Coupling

Uncoupled

High Cou

Loose

Low

CHANGE VI

TO ZERO

INCREMENT

VI

VI = V2 + A1

Fig. 5.10: The Range of Coupling Measures

1. Data Coupling: Two modules are data coupled, if they communicate by using an elementary

data item that is passed as a parameter between the two, e.g. an integer, a float, a character etc. Data

coupling is simpler and leaves less room for error. It is most convenient to trace data and to make

changes. If coupling must exist between components data coupling is the most desirable.

2. Message Coupling: This is the loosest type of coupling. Modules do not depend on each other;

instead they use a public interface to exchange parameter less messages.

3. Stamp Coupling: Stamp coupling is when modules share a composite data structure and use

only a part of it, possibly a different part (e.g. whole record is passed to a function which needs one field

of it).

4. Control Coupling: Two modules are control coupled if they pass a piece of information

intended to control the internal logic using at least one ‗control flag‘. The control flag is a variable that

controls decisions in subordinate or superior modules. The advantage of control coupling is that each

component controls only one function or executes one process. This restriction is necessary to minimize

the amount of controlling information which must be passed from one component to another and localizes

control to a fixed and identifiable set of parameters forming a well-defined interface.

5. External Coupling: External coupling occurs when two modules share an externally forced

data format, communication protocol or device interface.

6. Common Coupling: Two modules are common coupled if they both are the same global data

area. Changing the shared resource implies changing all the modules using it. The amount of coupling can

be reduced by organizing the design so that data are accessible from a common data store but dependence

is skill there because making a change to the common data means tracing back to all components that

access the data to calculate the effect of that change. This kind of coupling is known as common coupling.

With common coupling it becomes difficult to find which component is responsible for having set a

variable to a particular value.

COMMON DATA AREA

AND VARIABLE NAMES

COMPONENT X COMPONENT Y COMPONENT Z

Fig. 5.11: Example of Common Coupling

7. Content Coupling: Content coupling exists between two modules if these module changes a

statement in another module, one module references or changes data contained inside another module, or

one module branches into another module. One module actually modifies the procedural contents of

another module. In content coupling, modules are inter dependent on each other.

GLOBAL:
A1
A2
A3

VARIABLES:
V1

V2

Fig. 5.12: Example of Content Coupling

5.8 DATA DESIGN

Data design is the first of all the activities in a software design process. It leads to a better program

structure, effective modularity and decreased complexity. Data Design is developed by the transformation

of the Data dictionary and entity relationship diagram into Data Structure which are necessary to

implement the software. The whole process includes identifying the data defining specific data types and

storage mechanisms and guarantees data integrity by using business rules and other mechanisms.

Data design creates a model of data information that is represented at a high level of abstraction i.e.

the customer or user‘s views of data. The data model is refined into progressively more implementation

specific representations which can be easily processed by the computer based system. In many software

applications, the architecture of the data will put great influence on the architecture of the software that

must process it.

The selection process may take the help of algorithmic analysis of alternative structures in order to

determine the most efficient design or it can involve the use of a set of modules that provides operations

on some representation of objects. Some principles are observed while specifying the data are given

below:

1. The Systematic analysis principle applied to function and behavior should also be applied to

data. Lot of June and energy is spent on deriving, reviewing and specifying functional

requirements and preliminary design. In addition to it representations of data flow and content

should be developed and reviewed; data objects should be identified, alternative data

organizations should be considered and the impact of data modeling on software design should

be evaluated.

2. All data structures and the operation to be performed on each should be identified. The design

of an efficient data structure depends on operations to be performed on data structure upon

evaluation of the operations; an abstract data type is defined for use in subsequent software

design which simplifies software design considerably.

3. A data dictionary should be established and used to define both data and program design. The

specific relationship among data objects and the constraints on the elements of a date structure

can be more easily defined by dictionary like data specifications.

4. Low level data design decisions should be deferred until late in the design process. Overall data

organization can be defined during requirements analysis, refined during data design work and

specified fully during component level design.\

5. The representation of the data structure should be known only to those modules that must make

direct use of the data contained within the structure. The quality of a software design is studied

by the concept of information hiding and concept of coupling.

6. A library of useful data structures and the operations that may be applied to them should be

developed which can reduce both specification and design effort for data.

Component
B

Go To D1

Component
D

Go To D1

D1

7. A software design and programming language should support the specification and realization

of abstract data types.

There are three levels to view the structure of data:

1. Program component level 2. Application Level 3. Business Level

At the program component level, design of data structures and the algorithms needed to manipulate

them are essential for the development of a high quality design.

At the application level, the translation of a data model into a data base is necessary to get the

specified business objectives. At the business level, the collection of information stored in different data

bases should be reorganized into data ware house which enables data mining that has an effect on the

business.

5.9 ARCHITECTURAL DESIGN

An architectural design acts as a preliminary ―blue print‖ from which software is developed.

Architecture describes the software top-level structure which identifies its components. IEEE architectural

design as ‗the process of defining a collection of hardware and software components and their interfaces

to establish the framework for the development of a computer system.‘

First of all software requirement is examined to establish a framework and then building a physical

model using recognized software engineering methods. Shaw and Garlan (1996) suggest that software

architecture is also the first step in producing a software design levels; architecture, code design and

executable design.

It is very useful to work from the top-down designing an architecture, then the code design and

finally the executable design but Krasner, Curtis and Iscoe (1987) have studied the habit of developers on

19 projects; they present a report and on the basis of other evidences confirm that actually the designers

more back and forth from one level to other as they get extra knowledge about the solution and its

implication. As the designers explore other aspects of the system, the designers may interact with testers

or programmers bringing changes in the design to step up implementation, testability or maintainability.

In Architectural design performs the following functions:

1. The software designers can specify the system behavior (function and performance) after the

architectural design provides a level of abstraction.

2. It is really the consciences for a system, a good architectural design guides the process of

system enhancement indicating what changes can be made without compromising the integrity

of the system.
3. It evaluates all top level designs.

4. It develops and documents top level design for the external and internal interfaces.

5. It develops preliminary versions of user documentation.

6. It defines and documents preliminary test requirements and the schedule for software

integration.

5.10 PROCEDURAL DESIGN (FUNCTION ORIENTED DESIGN)

Procedural design techniques are very common and popular and at present they are being used in

many software organizations. It is the result of focusing full orientation to the function of the program.

This is an approach to software design where the design is decomposed into a set of interacting units

where each unit of module performs a specific function Niklans Wirth who is the creator of Pascal and a

number of other languages are one of the best known advocates of this method. His special variety to

known as step-wise refinement. This stepwise refinement is a top-down strategy where a program is

refined as a hierarchy of increasing levels of detail (Mills 1988). Refinement is actually a process of

elaboration.

Procedural design is also named as component level design. It occurs after data, architectural and

inter face designs have been developed. The aim is to translate the design model into an operational

software. The translation from high level of abstraction of existing design into low level of abstraction of

operational program is risky because if can bring in subtle errors that are difficult to locate and correct in

later shapes of the software process. During this translation, certain design principles must be followed.

Regardless of the methodology adopted to represent the procedural design, the date structures, interfaces

and algorithms defined should follow to a variety of well-established procedural guiding principles to

avoid errors as the procedural design is developed.

1. Structured Programming: In the late 1960s, Dijkstra and others gave the idea of using a set of

constructs from which any program could be formed. Each construct had a predictable logical structure

which was entered at the top and exited at the bottom for the convenience of the reader to follow

procedural flow move easily. These constructs are Sequence, Condition and Repetition. The sequence

implements processing steps, condition provides facilities for selected processing and Repetition allows

for looping. These structured constructs are meant to limit the Procedural Design to a small number of

pre-determined operations this contributes more to a human understanding the process called chunking by

the psychologists. Any program needs three constructs only for designing and implementation.

5.11 STRUCTURED DESIGN METHODOLOGY (SDM)

Structured Design Methodology helps the designer during process. Software is a transformation

function that converts given inputs to desired outputs. The main objective of this strategy is to specify

functional modules and connections. SDM controls and puts an influence on the final design so that the

programs implementing design would have a nice hierarchical structure that has functionally cohesive

modules and few inter connections between modules as for as possible. SDM aims to achieve high

cohesion but low coupling.

Steps: SDM follows the following procedure:

1. Restate the problem as Data Flow Diagram (DFD): The Designer finds full freedom in

creating a DFD because the system does not exist yet. DFD will solve the problems stated in SRS.

Fig. 5.13: Identification of DFD

Let us take the example of simple sort program that sort the ‗n‘ numbers in ascending order. The

problem has only one input file i.e. Read Number List. If we want to transform the input to the desired

output, all the numbers are stored in a list. Then all numbers list goes to the sort transformation. If

numbers are not sorted, Switch Transform changes the place order of number. Sorted Number are then

passed to display transformation for printing numbers in ascending order on the screen.

2. Identify most Abstract Input (MAI) and Most Abstract Out (MAO) data elements: White

going from outputs to inputs, the output of the major transformation is known as MAO and the input of

major transformation is known as MAI. In this example of sort program, Number is MAI to switch

transform and sorted N.L. is MAC.

Fig. 5.14: Identification of MAI & MAO

3. First Level Factoring: After the identification of central transformation MAI and MAO; the

next step is the analysis of these information‘s. Main Module is specified first of all whose aim is to

invoke the subordinates. For each MAI data item, an immediate subordinate module to the main module

is specified. Each module is an input module which aims to provide to the main module the most abstract

data item for which it is created. Same procedure is adopted for MAO data item, a subordinate module

that is an output module that accepts data from the main module is specified.

4. Factoring the input, output and transform branches: Each module in DFD is factored to

move details:

(a) Factoring the input Module: The objective of input module is to produce some data to the

main module. Do factor as input module, the transform in the DFD that produces number list is treated as

a central transform as is shown in the following diagram.

(b) Factoring the output Module: It resembles the factoring of input module. The aim is to reach

the final output. During the factoring of output module, usually there will be no input module because this

task is performed by MAI.

(c) Factoring the Central Module: To factor a central module into its subordinate modules; there

are no standard guidelines available. It depends on the designer‘s experience:

Graphical Design Notation

In this a flow chart is quite simple in the form of pictures.

A box indicates processing steps, a diamond represents a logical condition and arrows show the flow

of control. Condition (if then else) is represented by decision diamond – if true – it causes ‗then part

processing‘ and if false – it invokes ‗else part processing‘.

Repetition is depicted by two slightly different forms. The do-while tests the condition and executes

a loop task again and again as long as the condition holds true. A repeat until executes the loop task first

and then tests a condition and performs the task again until the condition fails. The selection construct is

the extension if then else successive decisions are taken to test a parameter until a true condition occurs

and a case part processing path is executed. The structured constructs may be nested within one another.

By nesting constructs in this way, a complex logical scheme may be developed.

Main

Number Sorted
N.L

Get Number List
(N.L)

Switch
Display Sorted
Number List

First Level Factoring

Get Number List

Read Numbers Sort

Get a Number
Add to

N ist umber L

Switch

Get a Number
Less than
Previous

Interchange
the Positions

F
lag

N
u
m

b
er

Sequence

First
Task

Next
Task

IF - THEN - ELSE

THEN Part

Case

Conditio

SELECTION

F

DO WHILE T

REPEAT-UNTIL

REPETITION

Fig. 5.15: Nesting of Different Structured Constructs

Tabular Design Notation: A module may be required to evaluate a complex combination of

conditions and select proper actions based on these conditions. Decision tables provide criteria that

translate actions and conditions in a tabular form. The table is not easy to misinterpret and if is possible to

be used as a machine readable input to a table driven algorithm. Decision table is divided into four

sections. As is clear from the following diagram; the upper left quadrant contains list of all conditions and

First Task

Condition
Else Part Then Part

Next Task

Loop Task

Loop
Condition

Nesting Constructs

ELSE

Part

T

F
Case
Part

T
n

F
T

F

T

F

the lower left hand quadrant contains a list of all actions that are possible depending on combinations of

conditions. The right hand quadrants indicate condition combinations and the related actions that will

happen for a specific combination.

Fig. 5.16: Decision Table Nomenclature

3. Program Design Language (PDL): PDL is also known as structured English or pseudo code.

This is a language that uses the vocabulary of a natural language (English) and the overall syntax of a

programming language. IEE defines PDL as a specification language with special const and sometimes

with special constructs and sometimes verification protocols used to develop, analyze and document a

program design. A team of designers and programmers use PDL as a way to ensure that actual

programming is likely to match design requirements PDL is mainly used during the detailed design phase

and uses to describe algorithms and specify interfaces between modules P&L enables the programmer to

concentrate on the algorithms without worrying about all the syntactic details of a particular programming

language.

Advantages of using PDL

⚫ It uses English like statements that describe specific operator very precisely.

⚫ It supports the idea of iterative refinement.

⚫ It is expressed in easy-to-read format.

⚫ Reviews became very easy because the source code is no examined.

⚫ The language uses flow chart replacements, program documentation and technical communication at

all level.

⚫ Continuous use and refinement of the PDL has established if as the medium of choice for either

creating refining a detailed program.

5.12 DESIGN VERIFICATION

Software design verification or review is necessary to review or check the design, implementation

way, testing and maintenance, members of Development team. These reviews are well documented,

comprehensive and systematic evaluation of a design to ensure the adequacy of the design requirements.

It is done to evaluate the capability of the design and to identity problems IEEE defines if as a formal

meeting at which a system‘s preliminary or detailed design is presented to the user customer or other

parties for comment and approval.

The main aim behind the design review is to detect the errors in the design process which will reflect

in code and also in the final system. These verifications are done to check if the design is of good quality

or not. These reviews are taken at the end of the design phase to find solutions and resolve issues

regarding software related design decisions, architectural design and detailed design. The reviews include

study of the development plans, requirements and design specifications, testing plans and procedures,

verification results for each stage of the design.

Types of Reviews: The review step generally involves three steps:

1. Preliminary Design Review

2. Critical Design Review

Types of Reviews

Preliminary Design
Review

Critical Design
Review

Program Design
Review

3. Program Design Review

1. Preliminary Design Review: It is a formal inspection of the high level architectural design to

satisfy whether the design satisfies the functional as well as non-functional requirements of the customers

and users. The review team includes customers, moderator, secretary, system designers, other state

holders not involved in the project. The main aim is to:

(i) To specify whether effective modularity is achieved or not.

(ii) To define interfaces for modules and external system elements.

(iii) To ensure maintain ability has been considered or not.

(iv) To assess quality factors.

(v) To check discrepancies if any and to resolve it by the review team.

Fig. 5.17: Types of Reviews

2. Critical Design Review: Critical Design Review is taken after the successful completion of the

preliminary design review. After the customer is satisfied, a critical design review is conducted with the

following purpose in mind:

(i) To ensure that designs (conceptual and technical) are without defects.

(ii) To determine whether the design satisfies the requirements specifications or not.

(iii) To assess the functionality and maturity of the final design.

(iv) To justify that the design has clarity, effectiveness and easy to understand. A review is formed

to check the design specifications using diagrams and data. Other individuals in addition to the

members of the review team are:

(a) System tester: A technical expert.

(b) Analyst: Responsible for writing system documentation.

(c) Program Designer: Who understands the design in detail.

If a minor fault is found, if is resolved by the review team. In case of a major fault, the review team

may take decision to revise the proposed technical design.

3. Program Design Review: The designers and the developers conduct this review after the

completion of Critical Design Review. This is done to get feedback on the designs before implementation

begins. The main purpose is to:

(i) Ensure the feasibility of the design.

(ii) Ensure that the interface is consistent with the architectural design.

(iii) Specify whether the design is amenable to implementation language.

(iv) Ensure that structured programming constructs are used throughout Software Design Process.

(v) Ensure that members of the implementation are able to understand the proposed design.

The team of Program Design Review includes program designers, developers, a system tester,

moderator, secretary and analyst. A successful Program Design Review presents all plans related to

coding plans before coding begins.

UNIT 6: CODING

6.1 INTRODUCTION

6.2 CODING

COURSE: SOFTWARE ENGINEERING

6.3 CODING STANDARDS

6.4 CODING GUIDELINES

6.5 PRINCIPLES OF PROGRAMMING/CODING

6.6 CODE REVIEW/VERIFICATION

6.1 INTRODUCTION

The software coding deals with design of data structure, information hiding, implementation. It is

that phase of software development where actual implementation is carried out. The coding is done in a

team manner which requires standardization of coding style, coding guidelines and coding

documentations. The information hiding is another important aspect which is handled in this phase. In this

chapter, we will go though the different coding styles and guidelines.

6.2 CODING

1. After the completion of design phase, coding is undertaken. The objective of the coding phase

is to transform the design of a system into high level language code and then to perform unit

testing at this code.

2. For adequate and effective coding, programmers have to mandatorily follow the coding

standards. Before the testing phase, coding standards should be verified.

3. Coding guidelines provide some general suggestions regarding the coding style to be followed.

4. After the coding of a module, code reviews are carried out. This code review ensures that

coding standards are followed during coding of a module. This code review also detects as

many errors possible before testing.

5. It is important that the code should be written in such a manner that it could be modified later,

if the need be.

6.3 CODING STANDARDS

A coding standard is a list of several rules to be followed during coding like variables should be

named, name of module, exception handling mechanism etc. Many organizations develop their own

coding standards and guidelines according to their need and type of software product they are going to

develop. The some commonly known coding standards are as follows:
1. The organizations should follow the exact format of the header information which is as follows:

⚫ Module‘s Name

⚫ Author‘s Name

⚫ Module‘s Creation Date

⚫ Module‘s Synopsis

⚫ Input/output parameters with different functions

2. There are some rules which limits the use of global. These rules explains what type of data can

be declared global and what type of data cannot declared global.

3. The method of reporting error conditions and exception conditions should be standardized

within an organization.

4. Global variable‘s name should always start with a capital letter whereas local variable‘s name

should always start with small letter.

6.4 CODING GUIDELINES

Coding guidelines provides some general suggestions regarding the coding style to be followed.

Some commonly known coding guidelines are as follows:

1. The function should be small not lengthy because length function is difficult to understand and

arises large number of bugs.

2. goto statements should be avoided because it makes program unstructured.

3. The code should be well documented. It is only possible by using comment lines which explain

it appropriately.

4. The code should be easy to understand. The complex coding is difficult to understand and

maintain.

5. Avoid to use same identifies for multiple purposes. Same identifier for multiple purposes makes

future enhancements very difficult and lead to confusion.

6. Variable names should be clear and simple. Variable names should be mnemonic procedure and

function name should also be mnemonic.

6.5 PRINCIPLES OF PROGRAMMING/CODING

Programming is the process of writing, testing, debugging and maintaining of a computer program.

The following are some basic principles of good programming practice.

1. Before start the programming, developer should understand the problem. He should choose a

programming language which meets the needs of the software to be built and the environment

in which it will operate.

2. Developer should create a visual layout that aids code understanding.

3. Avoid repetition in programming.

4. Coding should be simple because it takes less time to write, easier to modify and has fewer

bugs.

5. Coding should improves code reliability and decrease development time

6. Developer should create a set of unit tests that will be applied once the coding is

complete.Perform unit tests and correct the uncovered errors.

7. Developer should conduct a code walkthrough and refactor the code.

8. Developer should write the code for maintainer because any code that is worth writing is worth

maintaining in the future, either by him(developer) or by someone else.

6.6 CODE REVIEW/VERIFICATION

1. After the coding of a module, code reviews are carried out. This code review ensures that the

coding standards are followed during coding of a module. This code review also detects as

many errors possible before testing.

2. After the successful compilation of module, code review takes place. Code review is a cost

effective strategy which produce high quality code by eliminating coding errors.

3. Eliminating an error from code involves three main activities—testing, debugging and then

correcting errors. Debugging is very laborious and time consuming activity than testing.

4. There are four types of code review which are as follows:

(i) Code Walk through

(ii) Code Inspection

(iii) Clean Room Testing

(iv) Static Analysis
Clean Room Testing

[It relies on code net
though code inspection
and formal verification]

Code Walkthrough

[It is used to discover
the algorithmic and
logical errors in code]

Static Code Analysis
[It uses algorithims which

predicts program behaviour]

Code Inspection

[It is used to check for the
presence of some common
types of errors that usually

creep into code due to
programme oversight]

Fig. 6.1 Types of Code Review/Verification

1. Code Walkthrough

⚫ Code walkthrough is an informal code analysis technique.
⚫ Its aim is to discover the logical and algorithmic errors in the code.

⚫ It does not tell how to fix the discovered errors.

⚫ Before the code walkthrough meeting, the members note down their findings to discuss.

⚫ The success of code walkthrough are based on personal experience, common sense and several

subjective factors.

⚫ The walkthrough team should consist of three to seven members. The walkthrough team should

not be too big or too small.

2. Code Inspection

⚫ Code inspection is a formal code analysis technique.

⚫ The aim of the code inspection is to discover common types of errors which are caused due to

improper programming.
⚫ Code inspection detects the commonly made errors along with the coding standards.

⚫ It is also used to check whether coding standards are followed during the coding or not.

⚫ Code inspection checks some programming errors like incompatible assignments, improper

storage allocation and de-allocation, improper modification of loop variables, non-terminating

loops etc.

3. Clean Room Testing

⚫ It relies on code walkthrough code inspection and found verification.

⚫ The aim of clean room testing is to produce documentation and code which is more

maintainable and reliable.

⚫ Clean room testing involves walkthroughs, inspection and formal verification which is time

consuming and hence testing effort is increased.

4. Static Analysis/Static Code Analysis

⚫ . It is also known as automated code review.

⚫ Static code analysis is Excellent for enforcing compliance to standards

Types of Review

⚫ It Identifies bugs in code and the design and implementation problems

⚫ It uses algorithms which predict program behaviour.

⚫ Static analysis explain the purpose of possible executions of a program. It gives assurance

about any execution but this tool spend a lot of effort dealing with developer.

⚫ Static analysis can be performed on modules or unfinished code

COURSE: SOFTWARE ENGINEERING

UNIT 7: SOFTWARE TESTING

7.1 INTRODUCTION

7.2 SOFTWARE TESTING

7.2.1 OBJECTIVES OF SOFTWARE TESTING

7.2.2 PRINCIPLES OF SOFTWARE TESTING

7.3 BASIC CONCEPTS

7.4 SOFTWARE DEBUGGING

7.5 PLANNING OF TEST

10.6 SOFTWARE VERIFICATION AND VALIDATION

7.7 BLACK BOX TESTING

7.8 WHITE BOX TESTING

7.9 GREY BOX TESTING

7.10 DIFFERENCE BETWEEN BLACK BOX TESTING, GREY BOX TESTING AND WHITE

BOX TESTING

7.11 LEVELS OF TESTING

7.11.1 UNIT TESTING

7.11.2 INTEGRATION TESTING

7.11.3 SYSTEM TESTING

7.11.4 ACCEPTANCE TESTING

7.1 INTRODUCTION

Software testing is an activity that has significant impact on the software development process. It is

carefully designed process and must be performed effectively. Since allocated resource is limited and

time is another constraint, so it is not possible to test any system with all possible inputs. It is the primary

quality-control measure used during software development. The testing provides methods and techniques

to test a system in reasonable time with assurance to give quality performance. The testing is broadly

categorized as Black Box testing and White Testing. There is another way to cauterize the testing method

called level testing discussed in detail in this chapter. The chapter includes detail discussion on testing

along with advantages and limitations.

7.2 SOFTWARE TESTING

1. Testing is an important and critical activity of software development life cycle. It is the primary

quality control measurement activity used during software development.

2. Testing is a set of systematic activities that can be planned in advance and conducted with the intent

of finding errors. It make us feel confident that the software works well.

3. The goal of testing is to uncover requirement, design, and coding errors in the program. It is critical,

expensive and time-consuming activity.

4. The testing process requires proper planning. The testing cannot show the absence of defects. It can

show only software errors present.

5. During the testing phase, emphasis should be on the following:

⚫ Tests should be planned long before testing begins.

⚫ All tests should be traceable to customer requirements.

⚫ Tracing should begin ―in the small‖ and progress toward testing ―in the large.‖

⚫ Testing must be conducted by the independent third parties.

7.2.1 Objectives of Software Testing

The testing objective is to test the code with aim to discover errors. It also expresses that the

software functions are working according to software requirements specification with regard to

functionality, features, facilities and performance. It is here noticeable, that testing will detect errors in the

written code but it will not give you an idea about an error if the code does not address a specific

requirement set in the SRS.

The primary objectives of testing are:

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding the undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

4. It makes us feel confident that the software works well.

7.2.2 Principles of Software Testing

The testing principle is a guide book which helps software engineer to design effective test cases.

There are many principles that a software engineer must understand before starting the testing process.

The following are the main principles of testing:

Sr.
No.

Principles Description

1 All tests should be

traceable to customer

requirements

It states that any defects that might cause the program or

system to fail to meet the client‘s requirements must be

uncovered.

2 The Pareto principle

applies to software testing.

It is also known as 80/20 principle. It states that 20% of the

problems lead to 80% of other problems. One should

concentrate to 20% of the problems and 80% of the
problems will automatically remove.

3 Tests should be planned

long before testing begins.

According to principle testing phase should be started soon

after the requirements model is completed. The detailed test
cases can begin as soon as the design model is designed.

4 Testing should begin ―in

the small‖ and progress

toward testing ―in the
large.‖

It states that the first test may be focused on individual

components. As testing progresses, focus shifts in an

attempt to find errors in integrated components and later on
full system.

5 Testing should be

conducted by an

independent third party

The principle states that the testing should be conducted by

an independent third party. The software engineer who has

developed the system is not the best person to conduct
testing

6 Exhaustive testing is not

possible.

It states that It is possible, however, to adequately cover

program logic and to ensure that all conditions in the
component-level design have been exercised for testing.

Table 7.1 Principles of Software Testing

7.3 BASIC CONCEPTS

In software testing, there are few terms which generally create confusion. These terms are explained

as follows:

1. Errors: An error is a discrepancy between the actual value of the output given by the software

and the specified (correct) value of the output for that given input.

Errors occur when any aspect of software product is incomplete or incorrect. It is a mistake

committed by the development team during development process. Errors can be classified into following

categories:

⚫ Implementation Errors: These errors made in translating design specifications into source

code.

⚫ Requirement Errors: These errors are due to incomplete and incorrect statements of user

requirements. User fails to specify functional and nonfunctional requirements.

⚫ Design Errors: These are introduced by failure to translate the requirements into complete and

correct structures.

⚫ Syntax Error: A syntax error is a program statement that violates one or more rules of the

language in which it is written.

⚫ Logic Error: A logic error deals with incorrect data fields, out-of-range terms and invalid

combinations.

2. Fault: A fault is a condition that causes a system to fail in performing its required function. A

fault is the basic reason for software malfunction.

It is also commonly called a bug. Sometime, it is possible that even providing correct input system

give wrong results which due to some bug in the system. When it fails then we say that the system has a

fault or a bug and it needs repair.

3. Failure: Failure is the inability of the software to perform a required function to its

specification.

In other words, when software goes ahead in processing without showing error or fault even though

certain input and process specification are violated, then it is called a software failure.

4. Quality Assurance: Quality assurance is the planned and systematic approach. It ensures that

the standards, processes and methods are established and followed throughout the software development.

Quality assurance is a set of activities which ensure the implementation of processes, procedures and

standards in context to verification of developed software and intended requirements.

5. Quality Control: Quality control is used to verify the quality of the output. Quality control is

set of activities which ensure the verification of developed software with respect to documented (or not in

some cases) requirements.

6. Testing: Testing is the sequence of activities which ensure the identification of bugs in the

software.

Difference between Testing, Quality Assurance and Quality Control

Quality Assurance Quality Control Testing

Quality assurance focuses on

processes and procedures rather

than conducting actual testing on

the system.

Quality control focuses on

actual testing by executing

software with intend to

identify bug/defect through

implementation of procedures
and process.

Testing focuses on actual

testing of the system or unit

with suitable test

Quality assurance is process
oriented activities.

Quality control is a product
oriented activities.

Testing is product oriented
activities.

Quality assurance preventive

activities.

Quality control is a corrective

process.

Testing is a preventive

process

It is a subset of Software Test
Life Cycle (STLC)

QC can be considered as the
subset of Quality Assurance.

Testing is the subset of
Quality Control.

Table 7.2 Difference between Testing, Quality Assurance and Quality Control

7. Test Oracles: The test oracle defines a method to understand the determined and expected

behavior of a system in order to test the test case for checking abnormality in behavior. In other words, a

Test Oracle

Test

Cases
Comparison

Results
of

Testing

Software under
Testing

Error?

Yes
Debug

Testing

test oracle is a mechanism, different from the program itself, which can be used to check the correctness

of the output of the program for the test cases.

The following diagram shows how test oracle is useful to determine the expected behavior of the

system

Fig 7.1 Working of Test Oracle

The above diagram shows testing process in which the test cases are given to the test oracle and the

program under testing. The output of the two is compared to determine if the program behaved correctly

for the test cases.

The human oracles generally use the specifications of the program to decide what the correct

behavior of the system should be. To help the oracle to determine the correct behavior, it is important that

the behavior of the system be unambiguously specified and the specification itself should be error free.

Test oracles are human beings, so they may make mistakes when there is a discrepancy between the

oracles and the results of a program. We need to verify the result produced by the oracle before declaring

that there is a fault in the program.

8. Software Testability:

⚫ Software testability is how easily a computer program can be tested.

⚫ It is used to measure how adequately a particular set of tests will cover the product.

⚫ The characteristics which leads to testable software are: operability, observability,

decomposability, simplicity, stability and understandability.

9. Attributes of a Good Test: The following are some attributes of good test:

⚫ A good test has higher chances of finding errors.

⚫ A good test is neither too simple nor too complex.

⚫ A good test takes less time and resources.

⚫ A good test is not redundant.

7.4 SOFTWARE DEBUGGING

Testing and debugging are different terms. Debugging is the process of locating and fixing errors in

program code. Testing only determine the errors in the code. Testing does not fix those identified code.

Whereas debugging is used to locate the errors and fix the located errors.

Difference between Testing and Debugging

The testing involves the identification of bugs in the program without correcting it. Normally people

with a quality assurance background are involved in the identification of bugs. Testing is performed in the

testing phase. The debugging involves fixing the bugs. The developers who coded the program conduct

debugging.

Test Case Specification

Test Case Execution

Test Case Analysis

Testing Debugging

Testing is a process of finding and locating
of a defect in a program

The debugging is process of fixing the defects in
the program

Testing is done by the testing team The debugging is done by the development team

Testing is done with intention to find as
many defect as possible

The debugging is focused in removing the
defects

Table 7.3 Difference between Testing and Debugging

7.5 PLANNING OF TEST

A test plan is a document consisting of different test cases designed for different testing objects and

different testing attributes. The plan puts the tests in logical and sequential order per strategy chosen, top-

down or bottom-up. The test plan is a matrix of test and test cases listed in order of its execution.

A test plan states:

⚫ The items to be tested.

⚫ At what level they will be tested at.

⚫ The sequence they are to be tested in.

⚫ How the test strategy will be applied to the testing of each item and the test environment.

⚫ The software tools required and estimated hardware utilization.

⚫ What will be the constraints which affect the testing process?

Test Case: A test case is a set of instructions designed to discover a particular type of error or defect

in the software system by inducing a failure. The goal of selected test cases is to ensure that there is no

error in the program and if there is it then should be immediately depicted. Ideal test casement should

contain all inputs to the program. This is often called exhaustive testing.

There are two criteria for the selection of test cases:

⚫ Specifying a criterion for evaluating a set of test cases.

⚫ Generating a set of test cases that satisfy a given criterion.

Fig. 7.2 Process of Test Case

1. Test Case Specification: Test plan focuses on approach; does not deal with details of testing a

unit.Test case specification has to be done separately for each unit. Expected outcome also needs to be

specified for each test case. Together the set of test cases should detect most of the defects. Would like

the set of test cases to detect any defect, if it exists. The effectiveness and cost of testing depends on the

set of test cases. Preparing test case specifications is challenging and time consuming. So for each testing,

test case specifications are developed, reviewed, and executed.

2. Test Case Execution: Executing test cases may require drivers or stubs to be written; some

tests can be automatic, others manual A separate test procedure document may be prepared

3. Test Case Analysis: Test summary report is often an output – gives a summary of test cases

executed, effort, defects found, etc. the task of test case analysis are monitoring of testing effort is

important to ensure that sufficient time is spent, computer time also is an indicator of how testing is

proceeding, quality control focuses on removing defectsm and goal of defect prevention is to reduce the

defect injection rate in future

10.6 SOFTWARE VERIFICATION AND VALIDATION

The validation and verification are two different functions in software engineering. We need to

understand the difference between them.

Types of Black Box Testing

Equivalence Boundary Cause Effect
Class Value Graphing

Partitioning Analysis Technique

Verification: All actions are taken at the end of software development phase to check whether we

are building the product right. Verification is done at the end of each phase of software development

cycle.

Validation: All actions are taken at the end of software development cycle to check whether we are

building the right product. Validation is done at the end of complete development of the product.

These terms are often used interchangeably but following table shows how these terms are different:

Sr.No. Verification Validation

1 Verification is aimed to answer question
like, Are we building the product right?

Validation is aimed to answer question like,
Are we building the right product?

2 Verification ensures that the software
system meets all the functionality.

Validation ensures that functionalities meet
the intended behavior.

3 Verification takes place first and

includes the checking for code,
documentation etc.

Validation occurs after verification and

mainly involves the checking of the overall
product.

4 Verification is done by developers who

developed that software.

Validation is done by expert team of testers.

5 Verification is a static activity as it

includes the reviews, walkthroughs and

inspections to verify that software is
correct or not.

Validation has dynamic activities as it

includes executing the software against the

requirements.

6 It is an objective process and no

subjective decision should be needed to
verify the software.

It is a subjective process and involves

subjective decisions on how well the
software works.

Table 7.4 Difference between verification and validation

7.7 BLACK BOX TESTING

1. Black box testing is also called behavioral testing, focuses on the functional requirements of the

software. Black box testing enables the software engineer to derive sets of input conditions that will fully

exercise all functional requirements for a program.

2. In black-box testing, the tester only knows the inputs that can be given to the system and what

output the system should give. In other words, the basis for deciding test cases in functional testing is the

requirements or specifications of the system or module. This form of testing is also called functional or

behavioral testing.

3. Black-box testing is not an alternative to white-box techniques. It is acomplementary approach

that is likely to uncover a different class of errors thanwhite-box methods.It is applied at the later stages

of testing. Black-box testing identifies the following kinds of errors:
⚫ Incorrect or missing functions.

⚫ Interface missing or erroneous.

⚫ Errors in data model.

⚫ Errors in access to external data source.

Types of Black-box Testing:

7. 3 Types of Black-box Testing

Equivalence class partitioning and boundary value analysis both are test case design strategies in

black box testing.

1. Equivalence Class Partitioning:

• The domain of the input values partitioned into set of equivalence class. According to equivalence

class partitioning, testing the code with one value from an equivalence class is as good as testing the

code with any other value from the same equivalence class.

• In this method the input domain data is divided into different equivalence data classes. It is used to

reduce the total number of test cases to a finite set of test cases which covers maximum

requirements.

• It is a process of taking all possible test cases and placing them into different classes. One test value

is picked from each class while testing.

• Example: If we test for an input box which accepts numbers from 1 to 1000 then there is no use in

writing thousand test cases for all 1000 valid input numbers and test cases for invalid data. Using

equivalence partitioning method, we can divide our test cases into three equivalence classes of some

valid and invalid inputs.

2. Boundary Value Analysis:

• Boundary value analysis is a next part of equivalence class partitioning for designing test cases

where test cases are selected at the edges of the equivalence classes.

• This technique is used to identify errors at boundaries rather than finding those exist in center of

input domain.More application errors occur at the boundaries of input domain.

• It is often called stress and negative testing.

• Example: If we test for an input box which accepts numbers from 1 to 1000 then test cases are: one

test case for exact boundary values of input domains each means 1 and 1000, one test case for just

below boundary value of input domains each means 0 and 999, one test case for just above boundary

values of input domains each means 2 and 1001.

3. Cause Effect Graphing Techniques:

• The Cause-Effect graph technique restates the requirements specification in terms of logical

relationship between the input and output conditions. The causes are the input conditions and effects

are the results of those input conditions.

• This technique is used to recognize the root causes, the cause for an exact effect, problem, or

outcome.

• In this technique, first we recognize the input conditions (causes) and actions (effect). Then we build

up a cause-effect graph and convert cause-effect graph into a decision table. Finally we convert

decision table rules to test cases.

Advantages of Black-box Testing

Sr.
No

Advantages

1 The test is unbiased because the designer and the tester are independent of each other.

2 The tester does not need knowledge of any specific programming languages.

3 The test is done from the point-of-view of the user, not the designer.

4 Test cases can be designed as soon as the specifications are complete.

5 Well suited and efficient for large code segments.

6 Code Access not required.

7 Clearly separates user‘s perspective from the developer‘s perspective through visibly
defined roles.

8 Large numbers of moderately skilled testers can test the application with no
knowledge of implementation, programming language or operating systems.

Table 7.5 Advantages of Black-box Testing

Different Forms of White Box Testing

Control Flow
Testing

Data Flow
Testing

Disadvantages of Black-box Testing

Sr.
No.

Disadvantage

1 Limited Coverage since only a selected number of test scenarios are actually
performed.

2 Inefficient testing, due to the fact that the tester only has limited knowledge about an
application.

3 Blind Coverage, since the tester cannot target specific code segments or error prone
areas.

4 The test cases are difficult to design.

Table 7.6 Disadvantages of Black-box Testing

7.8 WHITE BOX TESTING

White-box testing is also known by other names, such as glass-box testing, structural testing, clear-

box testing, open-box testing, logic-driven testing, and path-oriented testing. A complementary approach

to functional or black-box testing is called structural or white-box testing. In this approach, test groups

must have complete knowledge of the internal structure of the software. We can say structural testing is

an approach to testing where the tests are derived from knowledge of the software‘s structure and

implementation. Structural testing is usually applied to relatively small program units, such as

subroutines, or the operations associated with an object. As the name implies, the tester can analyze the

code and use knowledge about the structure of a component to derive test data. The analysis of the code

can be used to find out how many test cases are needed to guarantee that all of the statements in the

program are executed at least once during the testing process. It would not be advisable to release

software that contains untested statements as the consequence might be disastrous.

The nature of software defects are:

Sr.
No.

Nature of software defects in white box testing

1 Logical errors and incorrect assumptions are inversely proportional to the probability that
a program path will be executed.

2 We often believe that a logical path is not to be executed when, in fact, it may be executed
on a regular basis.

3 Typographical errors are random. When a program is translated into programming
language source code, it is likely that some typing errors will occur.

Table 7.7 Nature of Software Defects in White Box Testing

Different forms of White Box Testing

Fig. 7.4 Different forms of White Box Testing

⚫ Control Flow Testing: Control flow testing is a structural testing strategy which uses the

program‘s control flow. It is a directed graph where the nodes represent the processing statements like

definition, computation and predicates while the edges represent the flow of control between processing

statements. It is more effective for unstructured code rather than structured code. But it cannot catch

initialization and specification mistakes.Toexamine the patterns, we need to construct a control flow

graph of the code.

⚫ Data Flow Based Testing: Data flow testing is a technique used to detect improper use of data

in a program. It is a white box testing technique thatcan be used to detect improper use of data values due

to coding errors. Data-flow testing uses the control flow graph to explore the unreasonable things that can

happen to data. Data-flow testing is the set of test strategies based on selecting paths through the

program‘s control flow in order to explore sequences of events related to the status of data objects. Data-

Fault based
Testing/Mutation

Testing

Coverage
based

Testing

Cyclomatic
Complexity Coverage

Path
Coverage

Condition
Coverage

Branch
Coverage

Statement
Coverage

Types of White Box Testing

flow testing strategies span the gap between all paths and branch testing.Data-flow testing monitors the

lifecycle of a piece ofdata and identifies potential bugs byexamining the patterns in which that piece of

data is used.

Reasons Why White-box Testing is performed

Sr.
No.

Reasons

1 All paths in a process are correctly operational.

2 All logical decisions are executed with true and false conditions.

3 All loops are executed with their limit values tested.

Table 7. 8 Reasons Why White-box Testing is Performed

Types of White Box Testing

Fig. 7.5 Types of White Box Testing

1. Fault Based Testing: It is used to detect certain types of faults. Its goal is to determine the

absence of faults rather than the goal of ―finding errors‖ .The focus is on faults rather than errors. It is not

a manual testing. The example of fault based testing is mutation testing.

2. Coverage Based Testing: A coverage based testingstrategy aims to execute certain program

elements to discover failures. It is of four types:

• Statement Coverage:It aims to design test cases so as to executeall the statements of a program.

In this strategy, every statement in a program is to be executed at least once. The disadvantage of this

strategy is that after executing a statement for one input value once, it assumes that it behave properly but

there is no guarantee that it will behave correctly for all input values.

• Branch Coverage:It is also known as edge testing. It is used to design test cases in such a way

that it assume true and false value in return. Branch coverage testing is stronger than statement coverage

testing because branch coverage ensures statement coverage but statement coverage does not ensure

branch coverage.

• Condition Coverage: In this testing strategy, test cases are designed to make each component

of a conditional expression to assume both true and false values. Condition coverage testing is a stronger

testing strategy than branch coverage and Branch testing is a simplified condition testing.

• Path Coverage:It design test cases in such a manner that all linearly independent paths in the

program are executed at least once. To understand each linearly independent path, we need to understand

the control flow graph (CFG). A control flow graph is a directed graph which consists of set of nodes and

edges (N, E). It describes how the control flows through the program.

1

2

3 4

5

6

(a) (b) (c)

Fig. 7.6 Examples of Path Coverage

• Cyclomatic Complex Graph: It tests the complexity of the program. It also estimates the

amount of effort required to understand the code. The Cyclomatic complexity is defines as:

CC=E-N+P

CC= Cyclomatic Complexity

E= Number of Edges
N= Number of Nodes

P= Number of Connected Components

Example:

Fig. 7.7 Examples of Cyclomatic Complexity

If number of edges= 7 and number of nodes= 6, then cyclomatic complexity is:

CC= 7-6+2 => CC=3

Cyclomatic complexity helps in estimation of complexity of code, testing effort and program

reliability.

Advantages of White-Box Testing:

Sr.
No.

Advantages

1 As the tester has knowledge of the source code, it becomes very easy to find out which
type of data can help in testing the application effectively.

2 It helps in optimizing the code.

3 Extra lines of code can be removed which can bring in hidden defects.

4 Due to the tester's knowledge about the code, maximum coverage is attained during
test scenario writing.

Table 7.9 Advantages of White Box Testing

Disadvantages of White-Box Testing:

1

2

1

2 3

4

1

2

3

4

Sr.
No.

Disadvantages

1 Due to the fact that a skilled tester is needed to perform white box testing, the costs are
increased.

2 Sometimes it is impossible to look into every nook and corner to find out hidden error s
that may create problems as many paths will go untested.

3 It is difficult to maintain white box testing as the use of specialized tools like code
analyzers and debugging tools are required.

Table 7.10 Disadvantages of White Box Testing

7.9 GREY BOX TESTING

Grey Box testing is a technique to test the application with limited knowledge of the internal

workings of an application. In software testing, the term ―the more you know the better‖ carries a lot of

weight when testing an application.

Mastering the domain of a system always gives the tester an edge over someone with limited domain

knowledge. Unlike black box testing, where the tester only tests the application‘s user interface, in grey

box testing, the tester has access to design documents and the database. Having this knowledge, the tester

is able to better prepare test data and test scenarios when making the test plan.

Advantages:

1. Offers combined benefits of black box and white box testing wherever possible.

2. Grey box testers don‘t rely on the source code; instead they rely on interface definition and

functional specifications.

3. Based on the limited information available, a grey box tester can design excellent test scenarios

especially around communication protocols and data type handling.

4. The test is done from the point of view of the user and not the designer.

Disadvantages:

Since the access to source code is not available, the ability to go over the code and test coverage is

limited. The tests can be redundant if the software designer has already run a test case. Testing every

possible input stream is unrealistic because it would take an unreasonable amount of time; therefore,

many program paths will go untested.

7.10 DIFFERENCE BETWEEN BLACK BOX TESTING, GREY BOX TESTING AND WHITE

BOX TESTING

Sr.
No.

Black Box Testing Grey Box Testing White Box Testing

1.

The Internal Workings of an

application are not required to

be known

Somewhat knowledge of the

internal workings are known

Tester has full

knowledge of the

Internal workings of the
application

2.

Also known as closed box

testing, data driven testing and

functional testing

Another term for grey box

testing is translucent testing

as the tester has limited

knowledge of the insides of
the application

Also known as clear

box testing, structural

testing or code based

testing

3.

Performed by end users and

also by testers and developers

Performed by end users and

also by testers and
developers

Normally done by

testers and developers

4. Testing is based on external

expectations Internal behavior

of the application is unknown

Testing is done on the basis

of high level database

diagrams and data flow
diagrams

Internal workings are

fully known and the

tester can design test
data accordingly

5. This is the least time

consuming and exhaustive

Partly time consuming and

exhaustive

The most exhaustive

and time consuming

type of testing

6. Not suited to algorithm testing Not suited to algorithm
testing

Suited for algorithm
testing

Table 7.11 Difference Between Black Box Testing, Grey Box Testing and White Box Testing

Integration Testing

Unit Testing

Acceptance Testing

System Testing

7.11 LEVELS OF TESTING

There are four levels of testing, i.e., four individual modules in the entire software system.

1. Unit Testing

2. Integration Testing

3. System Testing

4. Acceptance testing

Fig 7. 8 Level of Testing

7.11.1 Unit Testing

The unit test is the lowest level of testing performed during software development, where individual

units of software are tested in isolation from other parts of a program. The individual components are

tested to ensure that they work correctly. It focuses on the smallest unit of software design where each

component is tested independently without other system components. There are number of reasons to do

unit testing rather than testing the entire product:

Reasons to perform Unit Testing:

⚫ The size of a single unit is small that is easy to locate error in it.

⚫ The unit is small enough that we can attempt as much as test cases.

⚫ The interactions of multiple errors in it are eliminated.

Benefits of Unit testing:

The unit testing has the following benefits:

1. Increases confidence: The unit testing increases confidence in changing/maintaining code. If

good unit tests are written and if they are run every time any code is changed, the likelihood of any

defects due to the change being promptly caught is very high. If unit testing is not in place, the most one

can do is hope for the best and wait till the test results at higher levels of testing are out. Also, if codes are

already made less interdependent to make unit testing possible, the unintended impact of changes to any

code is less.

2. Reusability: The codes are more reusable. In order to make unit testing possible, codes need to

be modular.

3. Fastest development:The development is faster as the effort required to find and fix defects

found during unit testing is easy as comparison to finding defects during system testing or acceptance

testing.

4. Fewer efforts:The cost of fixing a defect detected during unit testing is lesser in comparison to

that of defects detected at higher levels.

5. Easy Debugging:Due to unit testing the debugging is easy. When a test fails, only the latest

changes need to be debugged.

6. Error discovery:Unit testing can discover error like Comparison of different data types,

Incorrect logical operators or precedence, Expectation of equality when precision error makes equality

unlikely, Incorrect comparison of variables, Improper loop termination, Failure to exit when divergent

iteration is encountered, Improperly modified loop variables

Driver

Interface :
Local data
structures
/boundary
conditions

/independent
paths/ error

handling paths

Stub

Moduletobetested

Stub

Test
Cases
Data

Results

Unit-test Procedure:

In unit testing, a module is tested under well-defined environment which includes all relevant code

that is required to execute the module. The following diagram shows environment:

Fig. 7.9 Unit-test Environment

In the unit test environment, there are four components namely stub, driver, interface, test cases.

Stubs: The Stubs serve to replace modules that are subordinate to the component to be tested.

Driver: A driver is nothing more than a ―main program‖ that accepts test-case data, passes such data

to the component (to be tested), and prints relevant results.

Interface: The interface manages takes like integration of local data structure, keep check on

boundary condition and possible path to execute the code. The local data structure is examined to ensure

that data stored temporarily maintains its integrity during all steps in an algorithm‘s execution. Boundary

conditions are tested to ensure that the module operates properly at the boundaries established to limit. All

independent paths through the control structure are exercised to ensure that all statements in a module

have been executed at least once.

Test case data: The test case data is collection of all possible input that the can be observed during

the testing phase of a particular unit.

7.11.2 Integration Testing

The second level of testing is called integration testing. Integration testing is a systematic technique

for constructing the program structure while at the same time conducting tests to uncover errors

associated with interfacing. In this testing many unit-tested modules are combined into subsystems, which

are then tested. The goal here is to see if the modules can be integrated properly.

Objective of Integration Testing:

The primary objective of integration testing is to test the module interfaces in order to ensure that

there are no errors in the parameter passing, when one module invokes another module. During

integration testing, different modules of a system are integrated in a planned manner using an integration

plan. The integration plan specifies the steps and the order in which modules are combined to realize the

full system. After each integration step, the partially integrated system is tested.

Approaches to Integration Testing:

The various approaches used for integration testing are:

Component - 1

Test Case - 1

Component - 2

Component - 1

Test Case - 1-2

Component - 3

Component - 2

Component - 1

Test Case - 1-3

Component - 1

Component - 3

Component - 2

Component - 1

Test Case - 1-4

Depth-first integration Breadth-first integration

M1

M2 M5

M3 M4

Fig. 7.10 Approaches to integration testing

• Incremental Approach: According to the incremental approach, testing starts with first

combine only two components together and performs testing on them. If there are some error then

removes them first, otherwise combine another component to it and then test again, and so on until the

whole system is developed. The following logical diagram shows the same process:

Stage-1 Stage-2 Stage-3 Stage-4

Fig. 7.11 Incremental approach for testing

According to Figure, in incremented testing is performed in four stages where in stage1, component1

is tested if it is working correctly then it is integrated with componets2 and gain test cases1 to 2 are used

for testing. If these components are corrected or error free then module componets3 is integrated, i.e.

stage3 and then tests case 1 to 3 applied on all the components. The process is repeated till whole system

is not integrated and tested.

• Top-Down Integration Testing

Top-down integration testing is an incremental approach to construction of program structures.

Modules are integrated by moving downward through the control hierarchy beginning with the main

control module.

Fig. 7.12 Types of Top down Integration Testing

Depth-first integration: According to depth first integration, we integrate all components on a

major control path of the structure. Let us consider example: For example, M1, M2, and M3 would be

integrated first. Next, M4, M6 would be integrated. Then, the left side depth control paths are built.

Integration Testing

Incremental Top-down
Approach Integration

Bottom-up Regression
Integration Testing

Smoke
Testing

Sandwich
Integration

Breadth-first integration: According to breadth first integration all components directly

subordinate at each level, moving across the structure horizontally will be incorporated as shown in

figure. The components M2, M5 will be integrated first. The next control level incorporate M3,

M4.Figure: Top-down integration testing

• Bottom up Integration Testing. The bottom-up integration testing begins construction and

testing with the components at the lowest level in the program structure. Then low level tested

components are integrated and again tested as group. A bottom-up integration strategy may be

implemented with the following steps:

1. Low-level components are combined into clusters that perform specific software sub functions.
2. A driver is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

The bottom up integration is demonstrated in the following diagram:

Cluster 3

Cluster 1

Fig. 7. 13 Bottom-up Integration Testing

The components are combined to form clusters 1, 2, 3. Every cluster is tested using a driver and

components in clusters 1 and 2 are subordinate to Ma. Drivers D1 and D2 are removed and the clusters

are interfaced directly to Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with

module Mb. Both Ma and Mb will ultimately be integrated with component Mcand so forth.

• Regression Testing: Regression testing is the activity that helps to ensure that changes (due to

testing or for other reasons) do not introduce unintended behavior or additional errors. The regression test

suite contains three different classes of test cases:

— Additional tests that focus on software functions.

— A representative sample of tests that will exercise all software functions.

— Tests that focus on the software components that have been changed.

• Smoke Testing: Smoke testing is an integration testing approach that is commonly

used when ―shrink-wrapped‖ software products are developed. Smoke testing is characterized as

a rolling integration approach because the software is rebuilt with new components and testing.

Smoke testing encompasses the following activities:
- Software components that have been translated into code are integrated into a ―build.‖ A build

includes all data files, libraries, reusable modules, and engineered components that are required

to implement one or more product functions.

Cluster 2

System Testing

- A series of tests is designed to expose errors that will keep the build from properly performing

its functions. The build is integrated with other builds and the entire product (in its current

form) is smoke tested daily.

• Sandwich Integration Testing. Sandwich integration testing is the combination of both the

top-down and bottom-up approach. So, it is also called mixed integration testing. In it, the whole system

is divided into three layers, just like a sandwich: the target is in the middle and one layer is above the

target and one is below the target.

Unit

Testing
Integration

Testing
Acceptance System

Testing

Incremental
Approach
Testing

Top down
Testing

Bottom up
Testing

Regression
Testing

Smoke
Testing

Depth First
Integration

Breadth First
Integration

hmark

lel

Alpha Beta Functional Performance

Volume Test

Security Test

Environmental Test

Quality Test

Configuration Test

Sandwich Integration
Testing

Fig 7.14 Levels of Testing in Detail

7.11.3 System Testing

Once all the components are integrated, the application as a whole is tested thoroughly to see that it

meets Quality Standards. This type of testing is performed by a specialized testing team. It is also

concerned with validating that the system meets its functional and non-functional requirements. There are

essentially three main kinds of system testing:

Fig 7.15 Classification of System Testing

• Alpha Testing: Alpha testing refers to the system testing carried out by the test team within the

development organization.

The alpha test is conducted at the developer‘s site by the customer underthe project team‘s guidance.

In this test, users test the software on thedevelopment platform and point out errors for correction.

However, thealpha test, because a few users on the development platform conduct it, has limited ability to

expose errors and correct them. Alpha tests are conducted in a controlled environment. It is a simulation

of real-life usage. Once the alpha test is complete, the software product is ready for transition to the

customer site for implementation and development.

• Beta Testing: Beta testing is the system testing performed by a selected group of friendly

customers.

Levels of Testing

Testing

Benc

Pilot

Paral

Alpha
Testing

Beta
Testing

Functional
Testing

Performance
Testing

Configuration

Test

Quality

Test

Environmental

Test

Security

Test

Volume

Test

Performance Testing

If the system is complex, the software is not taken for implementation directly. It is installed and all

users are asked to use the software in testing mode; this is not live usage. This is called the beta test. Beta

tests are conducted at the customer site in an environment where the software is exposed to a number of

users.

The developer may or may not be present while the software is in use. So, beta testing is a real-life

software experience without actual implementation. In this test, end users record their observations,

mistakes, errors, and so on and report them periodically.

In a beta test, the user may suggest a modification, a major change, or a deviation. The development

has to examine the proposed change and put it into the change management system for a smooth change

from just developed software to a revised, better software. It is standard practice to put all such changes in

subsequent version releases.

• Functional Testing: Functional Testing of the software is conducted on a complete, integrated

system to evaluate the system’s compliance with its specified requirements.

This is a type of black box testing that is based on the specifications of the software that is to be

tested. The application is tested by providing input and then the results are examined that need to conform

to the functionality it was intended for. There are five steps that are involved when testing an application

for functionality.
1. The determination of the functionality that the intended application is meant to perform.

2. The creation of test data based on the specifications of the application.

3. The output based on the test data and the specifications of the application.

4. The writing of Test Scenarios and the execution of test cases.

5. The comparison of actual and expected results based on the executed test cases.

An effective testing practice will see the above steps applied to the testing policies of every

organization and hence it will make sure that the organization maintains the strictest of standards when it

comes to software quality.

• Performance Testing: Performance testing checks the performance objectives set by the

customer. It is also known as nonfunctional testing. It measures the accessibility of data, accuracy of the

output, speed of response etc. The following are the types of performance testing:

Fig. 7.16 Types of Performance Testing

Volume Test: It address the handling of large amount of data in the system.

Security Test: It ensures the security requirements of the system.

Environmental Test: This test ensures performance of system under the tolerance for heat, motion,

portability, moisture and other environmental situations.

Quality Test:It ensures the reliability, availability and maintainability of the system.

Configuration Test: It ensures the various software and hardware configurations explained in the

requirements.

7.11.4 Acceptance Testing

Acceptance testing is the system testing performed by the customer to determine whether to accept

or reject the delivery of the system.

When customer software is built for one customer, a series of acceptancetests are conducted to

enable the customer to validate all requirements. Conducted by the end-user rather than the software

engineers, an acceptance test can range from an informal ‗test drive‘ to a planned and systematically

Types of Acceptance Tests

executed series of tests. In fact, acceptance testing can be conducted over a period of weeks or months,

thereby uncovering cumulative errors that might degrade the system over time. Acceptance tests are

written, conducted and evaluated by the customers.

Types of acceptance tests:

Fig. 7.17 Types of Acceptance Tests

• Benchmark Test:These tests are performed when a user has special requirements. These tests

are performed by actual user or a special team.

• Pilot Test:Pilot tests rely on all the functions of everyday working of the system. User exercise

the system as if it had been installed permanently.

• Parallel Test: In this test, the new system installs and operates in parallel with the previous

version. It builds the confidence of user in new system with the old system.

Pilot Test Benchmark Test Benchmark Test

COURSE: SOFTWARE ENGINEERING

UNIT 8: SOFTWARE MAINTENANCE AND RELIABILTY

8.1 INTRODUCTION

8.2 SOFTWARE MAINTENANCE

8.2.1 OBJECTIVES OF SOFTWARE MAINTENANCE

8.2.2 CATEGORIES OF SOFTWARE MAINTENANCE

8.2.3 COMPONENTS OF SOFTWARE MAINTENANCE PROCESS

8.2.4 SOFTWARE MAINTENANCE PROCESS

8.2.5 FACTORS AFFECTING THE SOFTWARE MAINTENANCE

8.3 SOFTWARE RELIABILITY

8.3.1 FACTORS AFFECTING SOFTWARE RELIABILITY

8.3.2 COMPARISON OF SOFTWARE RELIABILITY AND HARDWARE RELIABILITY

8.3.3 USES OF RELIABILITY STUDIES

8.3.4 SOFTWARE RELIABILITY METRICS

8.3.5 SOFTWARE RELIABILITY GROWTH MODELS

8.1 INTRODUCTION

Software maintenance is the activity associated with keeping an operationalcomputer system

continuously in tune with the requirements of users and data processing operations. It process is

expensive and risky and is very challenging.Maintenance may be classified into the four categories as

follows: Corrective,Adaptive,Perfective,and Preventive. The term software reliability is defined as the

probability of failure-free operation of a computer program in a specified environment for a specified

time. Thedetaileddiscussion about categories of software maintenance along with different components of

software maintenance procedures are discussed with appropriate examples.

8.2 SOFTWARE MAINTENANCE

1. After the complete development of software product, software is handed over to the client. It

client requires any changes in the software product after the delivery then it is turned as

software maintenance. Software maintenance is the most difficult aspect of software

development.

Definition

According to IEEE: “Software maintenance is a process of modification in a software product

after delivery to correct faults, or to improve performance so that software product can adopt the

modified environment.‖

Software Design Software
Maintenance Coding Development
Process Testing Process

2. Maximum time is spent on software maintenance as compared to the development of any phase

of the software product. So it is very important to kept maintenance in mind throughout the

software development.

 Once an error has been located, the maintenance programmer resolves the errors without adding

any error (regression errors). Detailed documentation helps the maintenance programmer in

correcting the errors.

 After receiving a maintenance request, the first step is to identify what type of error is there and

what type of maintenance is required.

 After correcting an error, the fix is tested again to ensure the correct functionality of the

software. It also ensure that there should be no other side effects.

 There are number of software life cycle models which ignore the software maintenance phase

and do not provide any adequate information for integration of maintenance into development

process.

 Software development and software maintenance are two processes of software engineering.

Software maintenance is based on the information gained from software development. Without

this information, software maintenance is very difficult process designing, coding, testing etc.

Fig. 8.1 Relationship between Software Maintanance Process & Software Development Process

 Software maintenance costs are underestimated during the design and implementation phase.

But in reality software maintenance costs are the greatest costs.

 One of the issue regarding maintenance is that software engineers have very poor image of

maintenance. They it is unimportant and easy task. That is why organizations allocated this

maintenance task into very less skilled and inexperienced staff which results in very high

maintenance cost and time.

 The maintenance cost and time can be reduced by involving experienced and skilled staff early

in the software process.

 In short, software maintenance means modification in a software product after delivery. It

mostly occurs at customer‘s site. Software maintenance include error detection, error correction

and enhancement of capabilities.

8.2.1 Objectives of Software Maintenance

Software maintenance is a set of activities performed in a software product after delivery. Example

of software maintenace are changes in code documentation manuals or any part of the product etc.

Software maintenance has many objectives which are as follows:

1. Software maintenance enhances the performance of the software.

2. It correct various errors occur during the functionality of the software.

3. It makes changes in the software so that it can adopt the changes in the environment.

4. Software maintenance also update the software product to avoid future problems.

Objectives of Software Maintenance

Enhances the performance

Correct errors

Adopt the modified environment

Avoid future proeblems

Satisifies the customer needs

Delete obsolete features

Fig. 8.2 Objectives of Software Maintenance

5. Maintenance process satisfies the customer needs. After maintenance, software starts working

according to user requirements.

6. Software maintenance is used to correct program errors, to add new capabilities into the

software to delete obsolete features and to improve performance of the software.

8.2.2 Categories of Software Maintenance

Software maintenance is categorized into four types which are as follows:

Corrective

Maintenance
Adaptive

Maintenance
Perfective

Maintenance
Preventive

Maintenance

Fig. 8.3 Categories of Maintenance

I. Corrective Maintenance

1. Corrective maintenance is necessary to resolve the bugs occur during the usage of a software

product. Bugs can occur at any stage during the development of software for example—bugs

can occur during the specifications, design, coding and testing etc.

2. Corrective maintenance changes the software to correct the errors. Some errors are caused by

data processing error and system performance errors.

3. An error can result from design errors, logic errors and coding errors which are as follows:

⚫ Designing errors: These errors occurs when change are made in the software. These changes

are incorrect, incomplete or misunderstood and arises errors.

⚫ Logic errors: These errors occurs when invalid tests, incomplete test data of design

specification and incorrect implementations are made in the software.

⚫ Coding errors:These errors occurs when incorrect use of source code logic and wrong

implementation of detailed logic design are made in the software.

II. Adaptive Maintenance

 Adaptive maintenance makes changes in the software so that it can work in new environment

(new platforms) without any error. For example—porting to a new compiler, operating system

and/or hardware.

 The term new environment refers to the totality of all conditions/influences that act from

outside on the software.

 Adaptive maintenance in the software is not the need of the client. It is the need of external

environment in which software works.

III. Perfective Maintenance

Categories of Maintenance

Components of Software Maintenance Process

1. Perfective maintenance needs time and money. It improves the efficiency, effectiveness and

maintainability of the software.

2. In perfective maintenance, additions or enhancements are made in the software to improve its

functionality and quality.

3. The perfective maintenance is requested by software engineer and the client. The software

engineer needs perfective maintenance to improve the status of the product in market by

improving its quality. The client needs perfective maintenance to meet the new requirements.

IV. Preventive Maintenance

1. Preventivemaintenance performs the activities/operations on the software to update it in

anticipation of any feature problems.

2. It performs modifications in a software after delivery, to improve the effectiveness, efficiency

and performance so that software does not face any problem (errors) in the future.

3. Preventive Maintenance is basically a modification in the software after the delivery to detect

and correct the faults. It ensures the safety of the software.

8.2.3 Components of Software Maintenance Process

The components mean those parts which play important role in software maintenance. The important

components of the software maintenance process are people, tasks and knowledge of the software.These

components are inter-related and interdependent on each other.

1. People: It is the most important component of the software maintenance process. This

component covers all those persons which are the part of the maintenance process directly or indirectly. It

includes users, development staff and maintenance staff.

⚫ Users are those people for whom software is developed and maintained.

⚫ Development staff is a team of those people who takes responsibility for the successful

development of the software product

⚫ Maintenance staff includes those people who participated actively in the software product after

the complete development of the software to make it up to date.

People Tasks Required knowledge

Users

Development Staff

Maintenance Staff

Generating test data

Implementation of plan

Maintenance requirements

Analysis

Localisation and

Impact Analysis

Design Structure

Program Structure

Domain of the S/W
Operational Environment

Fig. 8.4 Components of Software Maintenance Process

2. Tasks: Tasks means those activities or operations which are performed during successful

maintenance process. During maintenance process, various tasks like implemation plan, maintenance

requirements analysis, localization and impact analysis etc. are performed.

⚫ Implementation plan provides the step by step maintenance requirement analysis and the need

of maintenance requirement is checked.

⚫ It is used to examine the requirements of the maintenance. Impact analysis include the detailed

study of software product after the maintenance process. Performance, efficiency and

effectiveness of software product is examined after the successful implementation of

maintenance process.

Understand the existing Program

Generate adequate Maintenance Proposal

Determine Ripple Effect

Test the modified Program

No
Meet

th ng e testi
criterial

Yes

Release the new version of Program

3. Required knowledge: This component includes the structured and unstructured knowledge for

the software maintenance. Maintenance staff should have the knowledge of the design and program

structure of the software product. Maintenance staff should have complete knowledge of domain of the

software alongwith the operational environments.

8.2.4 Software Maintenance Process

The maintenance process has five steps which are follows:

1. Understand the existing programs: In this step, before modification, existing programs are

studied for complete understanding. Important attributes which are helpful in better understanding of

existing programs are: less complexity and proper documentation. In this step, objectives are also studied

in the detailed manner.

Fig. 8.5 Steps of Software Maintenance Process

2. Generate adequate maintenance proposal: In this step, maintenance team generates and

propose the adequate maintenance proposal to satisfy the maintenance objectives.

3. Determine ripple effect:

⚫ Ripple effect determines the effect of the change (modification) on the system.

⚫ Ripple effect is logical/functional in nature. It concerns the performance of the program.

⚫ The ripple effect is affected by the consequence of a program modification i.e. the stability of

the program.

⚫ Program stability is basically a resistance to the amplification of changes in the program.

⚫ Regression testing is performed to ensure that unchanged code is still working efficiently after

making the new changes in the software product.

4. Test the modified program: In this step, modified program is tested to ensure the reliability

level. Modified program should have at least same reliability level as before. Cost effective testing

techniques are also performed (during the maintenance process) to measure the required effort to test the

modified program, under well-defined testing conditions.

5. Release the new version of program: After meeting the testing conditions, modified programs

with new versions are ready to install/release.

Maintenance Process Models

No single maintenance process model is suitable for all types of maintenance projects. Maintenance

process activities are different for different maintenance projects.
There are two bread categories of maintenance process models are proposed.

Maintenance Process

Model 1
Maintenance Process

Model 2

Model 2 preferred for projects

Model 1 preferred for projects

where amount of rework required

where small re-work is requried.

 is significant. In this model,
reverse engineering cycle is

In this model, the code is

changed directly and the changes

 followed by a forward engineering

 are reflected in the relevant cycle. This approach is also known
 documents later.

 as software reengineering.

Fig. 8.6 Maintenance Process Models

1. Maintenance Process Model 1: The maintenance process model 1 starts with gathering the

requirements for change. This is the first step of Model 1. In this step, all the change requirements are

gathered in a detailed manners. In this step 2, these change requirements are analyzed and studied from

different angles. In this step 3, after analyzing the change requirements, efficient strategies are formulated

and adopted for code change. At this stage, few members of original development team goes a long way

in reducing the cycle time, for the projects involving unstructured and inadequate documented code.

Step 1

Step 2

Step 3

Step 4

Fig. 8.7 Maintenance Process Model 1

In this step 4, apply the formulated and adopted code strategies to the old code. Maintenance

engineers study the working of the old system and compare the working of their modified system with the

old system.

In the end, debugging of the new modified system become easy as after the comparison of the old

and new modified system, bugs can be easily localize.In the model 1, the output is update documents and

integrate and test the modified program.

2. Maintenance Process Model 2

⚫ Maintenance Process Model 2 is basically suitable for those projects where amount of rework is

required. In this model reverse engineering cycle is followed by a forward engineering cycle

which is known as software re-engineering.

⚫ During the reverse engineering, the old coding is analyzed to extract the module specification.

The module specification is further analyzed for producing the designing part. The design is

further analyzed to produce the original requirement specification. This process is known as

reverse re-engineering because analyzing process is done in reverse order means from bottom

to top stages.

⚫ After analyzing the original requirement specifications, change requirements are applied to the

original requirement specifications, to produce the new requirement specification. After

arriving at the new requirement specification, forward engineering approach is used to produce

a new code.

Maintenance Process Models

Factors affecting the Software Maintenance

Reverse Engineering Forward Engineering

Fig. 8.8 Maintenance Process Model 2

⚫ During the forward engineering approach, new requirement specifications are considered. At

the designing, module specification and coding stages, a substantial reuse is made from the

reverse engineered products. This approach produces good documentation, more structured

design as compared to the original product.

Comparison between Model 1 and Model 2

1. The maintenance process model 2 gives efficient outputs, efficient designs and adequate

documentation as compared to maintenance process model 1.

2. The maintenance process model 2 is cost lies than the process model 1.

3. The maintenance process model 2 is preferred only when amount of rework is very high. If

amount of rework is not more than 20%, then we use model 1.

8.2.5 Factors affecting the Software Maintenance

There are broadly two categories of factors which affects the software maintenance.

I. Technical Factors: The technical factors of software maintenance are as follows:

1. Programming Language: Programming language plays important role in the software

maintenance. Programs written in the high level language are easier to understand and

maintained than the programs written in low level languages.

2. Program Testing: If a program is adequately validated and tested during the design phase,

then there are less chances of occurring errors in the software product. If development staff

spends maximum effort and time on the design testing then maintenance cost is reduced

because of fewer errors in the program.

Maximum time and effort in design phase = Less maintenance cost

Technical Factors Non-Technical Factors

Programming Language

Program Testing

Module Independence

Documentation

Staff Stability

Hardware Stability

Life of a Program

External Environment

Fig. 8.9 Factors affecting the Software Maintenance

Requirements
for changes

New requirement
specification

New requirement
specification

Designing Designing

Module
Specification

Module
Specification

Coding Coding

3. Module Independence: Module independence means modification of one program unit of a

system without affecting any program unit of a system. If one module is being modified, then

there should be no effect on other modules of software product.

4. Documentation: Documentation is another important factor of software maintenance. If a

program is clearly, completely and adequately documented, then it provides the complete

understanding of the program.

II. Non-Technical Factors: Then non-technical factors of software maintenance are as follows:

1. Staff Stability: The stability of staff effects the maintenance cost.

More stable staff = less maintenance cost

If an original writer of a program understands and changes a program, then it will be very easy

for him to maintain that program and becomes very beneficial for the development company in

tums of cost and time. It is very difficult for individual to understand and changes in a program

written by another person (a new programmer).

2. Hardware Stability: The program must be modified to use new hardware. The new hardware

replaces the old (obsolete) equipment. Sometimes a program is designed for a particular

hardware configuration and the chances of the change of that particular hardware configuration

is very less during the program‘s whole life. In this situation there is no maintenance cost, but it

is rarest case.

3. Life of a Program: As the life of a program increases, the maintenance cost increases. The life

of a program depends upon the application used. When the application becomes obsolete,

program becomes obsolete and maintenance cost increases very rapidly because of conversion

of original obsolete hardware into new hardware.

Life of Program = Maintenance cost and time

4. External Environment: Sometimes, program depends upon the external environments.

According to the external environments, program needs changes and maintenance cost

increases. Whole maintenance process and maintenance cost depends upon the external

environment.

Changes in external environment Higher maintenance cost and time.

8.3 SOFTWARE RELIABILITY

 Software reliability is an important concern for users. Software reliability is an attribute of

software quality and it is independent from time.

2. More the software reliability, higher the software quality.

3. If software reliability increases, then the performance usability, functionality and stability of

software increases.

4. According to IEEE: “Software reliability is defined as the probability of failure free software

operation for a specified period of time in a specified environment.”

5. Reliability of a software product denotes the twist-worthiness, software reliability refers to as

the probability of the product working correctly over a given time duration.

6. Sometimes, it is very difficult to measure accurately the reliability of a software product

because of following two reasons:

(i) Reliability is observer dependent. It depends upon the observer‘s new point.

(ii) Reliability of a software product keeps changing as errors are detected and fixed. Because of

frequent changing nature of software product, problems occur during the accurate measurement

of the reliability of the software product.

8.3.1 Factors affecting Software Reliability

There are many factors which affects the growth of software reliability. These factors increases or

decreases the growth of software reliability. These factors are as follows:

1. Number of Errors: Software reliability depends upon the number. of errors in the software

product. Reliability is inversely proportional to the number of errors (defects) occur in the

software product.

Reliability
1

No. of Errors

Reliability increases when no. of errors decreases in a particular software product. Reliability

decreases when no. of errors increases in a particular software product.

2. Exact Location of Errors: Software reliability increases when maintenance staff finds out the

exact location of error. If exact location of error is finds out, then it becomes very easy for

maintenance staff to remove that error and enhance the reliability and quality of a particular

software product.

3. How Product is used: Software reliability also depends upon the way in which product is

being used. If proper and correct way is used then it increases the reliability of a particular

software product.

4. Time: Software reliability is not a function of time and different from hardware failure. With

the passage of time, hardware components become old and obsolete. Hardware failure parts can

be replaced with rate of hardware reliability increases. But in the case of software reliability,

software cannot wear out. It can be upgraded intentionally by identifying and resolving errors

and failure rate decreases. But when the software become obsolete, no more error correction

occurs and failure rate remains unchanged.

Fig. 8.10 Factors affecting Software Reliability

5. Cost: Software reliability depends on cost. Testing is a costly process. When more testing is

performed on any software product to improve its reliability, cost automatically increases.

6. Human Nature: Software reliability also depends upon the human nature and observer‘s view

point. Level of reliability various with the different nature of different people.

8.3.2 Comparison of Software Reliability and Hardware Reliability

Measuring the software reliability is more difficult as compared to measuring the hardware

reliability. The difference between hardware reliability and software reliability are as follows:

Sr.
No

Hardware Reliability Software Reliability

1 Hardware reliability is concerned with
stability.

Software reliability is concerned with
reliability growth.

2 Hardware components fail because of
wear and tear.

Software components fail because of bugs

3 To fix a hardware fault, one has to repair
or replace the failed parts.

To fix a software fault, one has to fix the bug,
code is changed to fix the bug.

4 When the hardware failure is repaired its

reliability would be maintained at the

level that existed before the failure

occurred.

When the software failure is repaired, its

reliability may increase or decrease.

5 Hardware reliability is a function of time
and different from software failure.

Software reliability is not a function of time
and different from hardware failure.

(n −1)

Table 8.1 Comparison of Software Reliability and Hardware Reliability

8.3.3 Uses of Reliability Studies

1. It estimate and predict the reliability behavior of software during its development and

operation.

2. It answer the various question like what is the expected duration between successive failures.

3. It helps software engineering methodologies to develop the code.

4. It use formal methods during code development.

5. It compares the software engineering technologies in terms of cost and quality.

6. It aims at fault-free performance of software systems.

7. It concerns itself with how well the software functions to meet the requirements of the user.

8. It measures the progress of system testing.

9. It gives us a better insight into the development processes.

8.3.4 Software Reliability Metrics

Software reliability metrics are used to express quantitatively the reliability of the software product.

No single metric is present which explains the reliability of all software products. Different software

products may have different reliability requirements. The following are some reliability metrics:

1. Rate of Occurrence of Failure (ROCOF): It measures the frequency of the occurrences of

failure. ROCOF can be obtained by observing the operational behavior of a software product over a

specified time interval.

ROCOF =
Total number of observed failures

Duration of observation

2. Mean Time to Failure (MTTF): MTTF is mean time between two successive failures. MTTF

is measured by recording the failure data for n failures.

MTTF =
n t

i+1
− t

i

i−1

3. Mean Time to Repair (MTTR): After the occurrence of failure, some time is required to fix

the error to solve that failure.

MTTF is the average time to track and fix the errors.

4. Mean Time between Failure (MTBF): MTBF metric is a combination of MTTF and MTTR

MTBF = MTTF + MTTR

5. Availability (Avail): It is a measure of how likely would the system be available for use over a

given period of time. Availability is a measure of time during the system is available over long time

periods.

Availability =
MTBF

(MTBF + MTTR)

8.3.5 Software Reliability Growth Models

A software reliability growth model is a mathematical model which helps in detection of errors,

repair those errors and improves the software reliability. It also provides information when to stop testing

to attain given reliability growth level.

The two software reliability growth models are as follows:

1. Jelinski and Moranda Model

2. Littlewood Model

Fig. 8.11 Software Reliability Growth Models

1. Jelinski and MorandaModel:It is the simplest reliability growth model. This model assumes

that reliability increases each time when an error is detected and repaired. Reliability is directly

proportional to error detection and fixing.

Rocof

t1 t2 t3 t4

Time

Fig. 8.12 Jelinski and Moranda Model

2. LittlewoodModel:It is the complex reliability growth model. This model assumes that there is

a chance of introducing additional errors when an error is detected and repaired.

Rocof

t1 t2 t3 t4

Time

Fig. 8.13 Littlewood Model

Software Reliability Growth Model

Jelinski and
Moranda Model

Littlewood
Model

